Nuprl Lemma : presheaf-fst-at

[a,I,p:Top].  (p.1(a) fst(p(a)))


Proof




Definitions occuring in Statement :  presheaf-fst: p.1 presheaf-term-at: u(a) uall: [x:A]. B[x] top: Top pi1: fst(t) sqequal: t
Definitions unfolded in proof :  presheaf-term-at: u(a) presheaf-fst: p.1 uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom extract_by_obid hypothesis sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[a,I,p:Top].    (p.1(a)  \msim{}  fst(p(a)))



Date html generated: 2018_05_23-AM-08_20_25
Last ObjectModification: 2018_05_20-PM-10_01_03

Theory : presheaf!models!of!type!theory


Home Index