Nuprl Lemma : ps-canonical-section-at
∀[Gamma,A,I,rho,a,J,x:Top].  (ps-canonical-section(Gamma;A;I;rho;a)(x) ~ (a rho x))
Proof
Definitions occuring in Statement : 
ps-canonical-section: ps-canonical-section(Gamma;A;I;rho;a)
, 
presheaf-term-at: u(a)
, 
presheaf-type-ap-morph: (u a f)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
presheaf-term-at: u(a)
, 
ps-canonical-section: ps-canonical-section(Gamma;A;I;rho;a)
, 
presheaf-type-ap-morph: (u a f)
, 
pi2: snd(t)
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
extract_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[Gamma,A,I,rho,a,J,x:Top].    (ps-canonical-section(Gamma;A;I;rho;a)(x)  \msim{}  (a  rho  x))
Date html generated:
2018_05_22-PM-10_04_22
Last ObjectModification:
2018_05_20-PM-09_48_42
Theory : presheaf!models!of!type!theory
Home
Index