Nuprl Lemma : pscm-adjoin-comp

[Gamma,Delta,X,A,sigma,u,g:Top].  ((sigma;u) (sigma g;(u)g))


Proof




Definitions occuring in Statement :  pscm-adjoin: (s;u) psc-adjoin: X.A pscm-ap-term: (t)s pscm-comp: F uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pscm-ap-term: (t)s pscm-comp: F pscm-adjoin: (s;u) pscm-ap: (s)x compose: g
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis sqequalAxiom extract_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[Gamma,Delta,X,A,sigma,u,g:Top].    ((sigma;u)  o  g  \msim{}  (sigma  o  g;(u)g))



Date html generated: 2018_05_23-AM-08_12_55
Last ObjectModification: 2018_05_20-PM-09_51_59

Theory : presheaf!models!of!type!theory


Home Index