Nuprl Lemma : pscm-ap-term-at
∀[J,s,rho,t:Top].  ((t)s(rho) ~ t((s)rho))
Proof
Definitions occuring in Statement : 
pscm-ap-term: (t)s
, 
presheaf-term-at: u(a)
, 
pscm-ap: (s)x
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
presheaf-term-at: u(a)
, 
pscm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[J,s,rho,t:Top].    ((t)s(rho)  \msim{}  t((s)rho))
Date html generated:
2018_05_22-PM-10_04_31
Last ObjectModification:
2018_05_20-PM-09_48_54
Theory : presheaf!models!of!type!theory
Home
Index