Nuprl Lemma : pscm-ap-term-at

[J,s,rho,t:Top].  ((t)s(rho) t((s)rho))


Proof




Definitions occuring in Statement :  pscm-ap-term: (t)s presheaf-term-at: u(a) pscm-ap: (s)x uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  presheaf-term-at: u(a) pscm-ap-term: (t)s uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom extract_by_obid hypothesis sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[J,s,rho,t:Top].    ((t)s(rho)  \msim{}  t((s)rho))



Date html generated: 2018_05_22-PM-10_04_31
Last ObjectModification: 2018_05_20-PM-09_48_54

Theory : presheaf!models!of!type!theory


Home Index