Nuprl Lemma : pscm-presheaf-app

[C,w,u,s:Top].  ((app(w; u))s app((w)s; (u)s))


Proof




Definitions occuring in Statement :  presheaf-app: app(w; u) pscm-ap-term: (t)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-app: app(w; u) pscm-ap-term: (t)s pscm-ap: (s)x
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis sqequalAxiom extract_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[C,w,u,s:Top].    ((app(w;  u))s  \msim{}  app((w)s;  (u)s))



Date html generated: 2018_05_23-AM-08_22_33
Last ObjectModification: 2018_05_20-PM-10_03_29

Theory : presheaf!models!of!type!theory


Home Index