Nuprl Lemma : pscm-presheaf-app
∀[C,w,u,s:Top].  ((app(w; u))s ~ app((w)s; (u)s))
Proof
Definitions occuring in Statement : 
presheaf-app: app(w; u)
, 
pscm-ap-term: (t)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
presheaf-app: app(w; u)
, 
pscm-ap-term: (t)s
, 
pscm-ap: (s)x
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
extract_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[C,w,u,s:Top].    ((app(w;  u))s  \msim{}  app((w)s;  (u)s))
Date html generated:
2018_05_23-AM-08_22_33
Last ObjectModification:
2018_05_20-PM-10_03_29
Theory : presheaf!models!of!type!theory
Home
Index