Step
*
1
2
1
1
of Lemma
NoBallRetraction-implies-BrouwerFPT
1. n : ℕ
2. f : B(n) ⟶ B(n)
3. ∀x,y:B(n). (req-vec(n;x;y)
⇒ req-vec(n;f x;f y))
4. ∀x:B(n). f x ≠ x
5. ¬(n = 0 ∈ ℤ)
6. ∀x:B(n). (r0 < x - f x⋅x - f x)
7. ∀x:B(n). ((f x⋅f x - r1) ≤ r0)
8. ∀x:B(n). (r0 ≤ x - f x⋅x - f x)
9. ∀x:B(n). ∀b:ℝ. (r0 ≤ ((b * b) - r(4) * x - f x⋅x - f x * (f x⋅f x - r1)))
⊢ ∃g:B(n) ⟶ B(n)
((∀x,y:B(n). (req-vec(n;x;y)
⇒ req-vec(n;g x;g y)))
∧ (∀x:B(n). (||g x|| = r1))
∧ (∀x:B(n). ((||x|| = r1)
⇒ req-vec(n;g x;x))))
BY
{ (Assert ∀x:B(n). (||f x + quadratic1(x - f x⋅x - f x;r(2) * f x⋅x - f x;f x⋅f x - r1)*x - f x|| = r1) BY
((D 0 THENA Auto)
THEN (InstLemma `quadratic-formula1` [⌜x - f x⋅x - f x⌝;⌜r(2) * f x⋅x - f x⌝;⌜f x⋅f x - r1⌝;
⌜quadratic1(x - f x⋅x - f x;r(2) * f x⋅x - f x;f x⋅f x - r1)⌝]⋅
THENA Auto
)
THEN MoveToConcl (-1)
THEN (GenConcl ⌜quadratic1(x - f x⋅x - f x;r(2) * f x⋅x - f x;f x⋅f x - r1) = t ∈ ℝ⌝⋅ THENA Auto)
THEN (GenConcl ⌜x - f x = v ∈ ℝ^n⌝⋅ THENA Auto)
THEN (GenConcl ⌜(f x) = y ∈ B(n)⌝⋅ THENA Auto)
THEN All Thin
THEN Auto
THEN BLemma `real-vec-norm-eq-iff`
THEN Auto
THEN (RWO "rnexp-one" 0 THENA Auto)
THEN (RWW "dot-product-linearity1.1 dot-product-linearity1.2" 0⋅ THENA Auto)
THEN (RWW "dot-product-linearity2.1 dot-product-linearity2.2" 0⋅ THENA Auto)
THEN (Assert v⋅y = y⋅v BY
Auto)
THEN (RWO "-1" 0 THENA Auto)
THEN (Assert t^2 = (t * t) BY
Auto)
THEN RWO "-1" (-3)
THEN Auto)) }
1
1. n : ℕ
2. f : B(n) ⟶ B(n)
3. ∀x,y:B(n). (req-vec(n;x;y)
⇒ req-vec(n;f x;f y))
4. ∀x:B(n). f x ≠ x
5. ¬(n = 0 ∈ ℤ)
6. ∀x:B(n). (r0 < x - f x⋅x - f x)
7. ∀x:B(n). ((f x⋅f x - r1) ≤ r0)
8. ∀x:B(n). (r0 ≤ x - f x⋅x - f x)
9. ∀x:B(n). ∀b:ℝ. (r0 ≤ ((b * b) - r(4) * x - f x⋅x - f x * (f x⋅f x - r1)))
10. ∀x:B(n). (||f x + quadratic1(x - f x⋅x - f x;r(2) * f x⋅x - f x;f x⋅f x - r1)*x - f x|| = r1)
⊢ ∃g:B(n) ⟶ B(n)
((∀x,y:B(n). (req-vec(n;x;y)
⇒ req-vec(n;g x;g y)))
∧ (∀x:B(n). (||g x|| = r1))
∧ (∀x:B(n). ((||x|| = r1)
⇒ req-vec(n;g x;x))))
Latex:
Latex:
1. n : \mBbbN{}
2. f : B(n) {}\mrightarrow{} B(n)
3. \mforall{}x,y:B(n). (req-vec(n;x;y) {}\mRightarrow{} req-vec(n;f x;f y))
4. \mforall{}x:B(n). f x \mneq{} x
5. \mneg{}(n = 0)
6. \mforall{}x:B(n). (r0 < x - f x\mcdot{}x - f x)
7. \mforall{}x:B(n). ((f x\mcdot{}f x - r1) \mleq{} r0)
8. \mforall{}x:B(n). (r0 \mleq{} x - f x\mcdot{}x - f x)
9. \mforall{}x:B(n). \mforall{}b:\mBbbR{}. (r0 \mleq{} ((b * b) - r(4) * x - f x\mcdot{}x - f x * (f x\mcdot{}f x - r1)))
\mvdash{} \mexists{}g:B(n) {}\mrightarrow{} B(n)
((\mforall{}x,y:B(n). (req-vec(n;x;y) {}\mRightarrow{} req-vec(n;g x;g y)))
\mwedge{} (\mforall{}x:B(n). (||g x|| = r1))
\mwedge{} (\mforall{}x:B(n). ((||x|| = r1) {}\mRightarrow{} req-vec(n;g x;x))))
By
Latex:
(Assert \mforall{}x:B(n)
(||f x + quadratic1(x - f x\mcdot{}x - f x;r(2) * f x\mcdot{}x - f x;f x\mcdot{}f x - r1)*x - f x|| = r1) BY
((D 0 THENA Auto)
THEN (InstLemma `quadratic-formula1` [\mkleeneopen{}x - f x\mcdot{}x - f x\mkleeneclose{};\mkleeneopen{}r(2) * f x\mcdot{}x - f x\mkleeneclose{};\mkleeneopen{}f x\mcdot{}f x - r1\mkleeneclose{};
\mkleeneopen{}quadratic1(x - f x\mcdot{}x - f x;r(2) * f x\mcdot{}x - f x;f x\mcdot{}f x - r1)\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN MoveToConcl (-1)
THEN (GenConcl \mkleeneopen{}quadratic1(x - f x\mcdot{}x - f x;r(2) * f x\mcdot{}x - f x;f x\mcdot{}f x - r1) = t\mkleeneclose{}\mcdot{}
THENA Auto
)
THEN (GenConcl \mkleeneopen{}x - f x = v\mkleeneclose{}\mcdot{} THENA Auto)
THEN (GenConcl \mkleeneopen{}(f x) = y\mkleeneclose{}\mcdot{} THENA Auto)
THEN All Thin
THEN Auto
THEN BLemma `real-vec-norm-eq-iff`
THEN Auto
THEN (RWO "rnexp-one" 0 THENA Auto)
THEN (RWW "dot-product-linearity1.1 dot-product-linearity1.2" 0\mcdot{} THENA Auto)
THEN (RWW "dot-product-linearity2.1 dot-product-linearity2.2" 0\mcdot{} THENA Auto)
THEN (Assert v\mcdot{}y = y\mcdot{}v BY
Auto)
THEN (RWO "-1" 0 THENA Auto)
THEN (Assert t\^{}2 = (t * t) BY
Auto)
THEN RWO "-1" (-3)
THEN Auto))
Home
Index