Nuprl Lemma : NoBallRetraction-implies-BrouwerFPT
∀n:ℕ. BrouwerFPT(n) supposing NoBallRetraction(n)
Proof
Definitions occuring in Statement : 
NoBallRetraction: NoBallRetraction(n), 
BrouwerFPT: BrouwerFPT(n), 
nat: ℕ, 
uimplies: b supposing a, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
NoBallRetraction: NoBallRetraction(n), 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
BrouwerFPT: BrouwerFPT(n), 
and: P ∧ Q, 
cand: A c∧ B, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
real-unit-ball: B(n), 
prop: ℙ, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
top: Top, 
real-vec-sep: a ≠ b, 
le: A ≤ B, 
less_than': less_than'(a;b), 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
nat_plus: ℕ+, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
less_than: a < b, 
squash: ↓T, 
ext-eq: A ≡ B, 
iff: P ⇐⇒ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
sq_stable: SqStable(P), 
req_int_terms: t1 ≡ t2, 
rge: x ≥ y, 
rev_implies: P ⇐ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
nonneg-poly: nonneg-poly(p), 
bl-all: (∀x∈L.P[x])_b, 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
int_term_to_ipoly: int_term_to_ipoly(t), 
int_term_ind: int_term_ind, 
itermSubtract: left (-) right, 
add_ipoly: add_ipoly(p;q), 
add-ipoly-prepend: add-ipoly-prepend(p;q;l), 
itermMultiply: left (*) right, 
mul_ipoly: mul_ipoly(p;q), 
itermVar: vvar, 
cons: [a / b], 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L), 
nil: [], 
it: ⋅, 
mul-mono-poly: mul-mono-poly(m;p), 
mul-monomials: mul-monomials(m1;m2), 
merge-int-accum: merge-int-accum(as;bs), 
eager-accum: eager-accum(x,a.f[x; a];y;l), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
insert-int: insert-int(x;l), 
minus-poly: minus-poly(p), 
map: map(f;as), 
itermConstant: "const", 
rev-append: rev(as) + bs, 
list_accum: list_accum, 
band: p ∧b q, 
nonneg-monomial: nonneg-monomial(m), 
le_int: i ≤z j, 
bnot: ¬bb, 
lt_int: i <z j, 
bfalse: ff, 
btrue: tt, 
even-int-list: even-int-list(L), 
bor: p ∨bq, 
null: null(as), 
tl: tl(l), 
pi2: snd(t), 
eq_int: (i =z j), 
hd: hd(l), 
pi1: fst(t), 
true: True, 
rneq: x ≠ y, 
req-vec: req-vec(n;x;y), 
real-vec-sub: X - Y, 
real-vec-mul: a*X, 
real-vec-add: X + Y, 
quadratic1: quadratic1(a;b;c), 
rdiv: (x/y)
Lemmas referenced : 
approx-fixpoint-unit-ball-2, 
real-unit-ball_wf, 
real-vec-sep_wf, 
req-vec_wf, 
istype-void, 
real_wf, 
rless_wf, 
int-to-real_wf, 
NoBallRetraction_wf, 
istype-nat, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
real-unit-ball-0, 
real-vec-dist_wf, 
istype-le, 
int_seg_properties, 
nat_plus_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
rless_functionality, 
req_weakening, 
real-vec-dist-dim0, 
real-vec-sep-iff-dot-product, 
radd-preserves-rleq, 
rsub_wf, 
dot-product_wf, 
radd_wf, 
itermSubtract_wf, 
rnexp_wf, 
real-vec-norm_wf, 
sq_stable__rleq, 
real-vec-norm-nonneg, 
rleq_weakening_equal, 
rleq_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
req_inversion, 
real-vec-norm-squared, 
rleq_functionality_wrt_implies, 
rnexp_functionality_wrt_rleq, 
rnexp-one, 
dot-product-nonneg, 
real-vec-sub_wf, 
rmul_preserves_rleq2, 
rleq_wf, 
rmul_wf, 
itermMultiply_wf, 
rleq-int, 
istype-false, 
real-term-nonneg, 
real_term_value_mul_lemma, 
rsub_functionality_wrt_rleq, 
quadratic-formula1, 
quadratic1_wf, 
req_wf, 
quadratic2_wf, 
real-vec-norm-eq-iff, 
real-vec-add_wf, 
real-vec-mul_wf, 
dot-product-comm, 
rnexp2, 
req-implies-req, 
req_functionality, 
req_transitivity, 
dot-product-linearity1, 
radd_functionality, 
dot-product-linearity2, 
rmul_functionality, 
real-vec-sub_functionality, 
req-vec_weakening, 
rsub_functionality, 
dot-product_functionality, 
req-vec_functionality, 
real-vec-add_functionality, 
real-vec-mul_functionality, 
quadratic1_functionality, 
rleq_weakening, 
rnexp_functionality, 
rmul_preserves_rless, 
rless-int, 
equal_wf, 
dot-product-linearity1-sub, 
rdiv_wf, 
rminus_wf, 
rsqrt_wf, 
rdiv_functionality, 
radd-preserves-req, 
itermMinus_wf, 
real_term_value_minus_lemma, 
square-nonneg, 
rsqrt_functionality, 
rsqrt-of-square, 
rless_transitivity2, 
rleq_weakening_rless, 
rinv_wf2, 
rinv-of-rmul, 
rmul-rinv, 
rmul-rinv3
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
rename, 
extract_by_obid, 
setElimination, 
dependent_set_memberEquality_alt, 
hypothesis, 
independent_pairFormation, 
functionIsType, 
universeIsType, 
isectElimination, 
applyEquality, 
because_Cache, 
productIsType, 
setIsType, 
natural_numberEquality, 
unionElimination, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
functionExtensionality, 
productElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityIstype, 
promote_hyp, 
inrFormation_alt, 
closedConclusion, 
inlFormation_alt, 
hyp_replacement, 
applyLambdaEquality, 
functionEquality
Latex:
\mforall{}n:\mBbbN{}.  BrouwerFPT(n)  supposing  NoBallRetraction(n)
Date html generated:
2019_10_30-AM-11_29_51
Last ObjectModification:
2019_07_30-PM-01_05_02
Theory : real!vectors
Home
Index