Nuprl Lemma : real-vec-dist-dim0
∀[x,y:Top].  (d(x;y) = r0)
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y), 
req: x = y, 
int-to-real: r(n), 
uall: ∀[x:A]. B[x], 
top: Top, 
natural_number: $n
Definitions unfolded in proof : 
real-vec-dist: d(x;y), 
real-vec-norm: ||x||, 
dot-product: x⋅y, 
subtract: n - m, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
top: Top, 
so_apply: x[s], 
uimplies: b supposing a, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q
Lemmas referenced : 
rsum-empty, 
istype-void, 
rsqrt0, 
req_witness, 
rsqrt_wf, 
rleq_weakening_equal, 
int-to-real_wf, 
rleq_wf, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
minusEquality, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
independent_isectElimination, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
isect_memberFormation_alt, 
because_Cache, 
dependent_set_memberEquality_alt, 
universeIsType, 
applyEquality, 
independent_functionElimination, 
inhabitedIsType, 
isectIsTypeImplies
Latex:
\mforall{}[x,y:Top].    (d(x;y)  =  r0)
Date html generated:
2019_10_30-AM-08_28_11
Last ObjectModification:
2019_06_21-PM-04_59_44
Theory : reals
Home
Index