Nuprl Lemma : real-vec-dist-dim0

[x,y:Top].  (d(x;y) r0)


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) req: y int-to-real: r(n) uall: [x:A]. B[x] top: Top natural_number: $n
Definitions unfolded in proof :  real-vec-dist: d(x;y) real-vec-norm: ||x|| dot-product: x⋅y subtract: m uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: subtype_rel: A ⊆B implies:  Q
Lemmas referenced :  rsum-empty istype-void rsqrt0 req_witness rsqrt_wf rleq_weakening_equal int-to-real_wf rleq_wf istype-top
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality minusEquality isect_memberEquality_alt voidElimination hypothesis independent_isectElimination independent_pairFormation imageMemberEquality hypothesisEquality baseClosed isect_memberFormation_alt because_Cache dependent_set_memberEquality_alt universeIsType applyEquality independent_functionElimination inhabitedIsType isectIsTypeImplies

Latex:
\mforall{}[x,y:Top].    (d(x;y)  =  r0)



Date html generated: 2019_10_30-AM-08_28_11
Last ObjectModification: 2019_06_21-PM-04_59_44

Theory : reals


Home Index