Nuprl Lemma : real-vec-dist-dim0
∀[x,y:Top].  (d(x;y) = r0)
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y)
, 
req: x = y
, 
int-to-real: r(n)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
natural_number: $n
Definitions unfolded in proof : 
real-vec-dist: d(x;y)
, 
real-vec-norm: ||x||
, 
dot-product: x⋅y
, 
subtract: n - m
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
Lemmas referenced : 
rsum-empty, 
istype-void, 
rsqrt0, 
req_witness, 
rsqrt_wf, 
rleq_weakening_equal, 
int-to-real_wf, 
rleq_wf, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
minusEquality, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
independent_isectElimination, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
isect_memberFormation_alt, 
because_Cache, 
dependent_set_memberEquality_alt, 
universeIsType, 
applyEquality, 
independent_functionElimination, 
inhabitedIsType, 
isectIsTypeImplies
Latex:
\mforall{}[x,y:Top].    (d(x;y)  =  r0)
Date html generated:
2019_10_30-AM-08_28_11
Last ObjectModification:
2019_06_21-PM-04_59_44
Theory : reals
Home
Index