Nuprl Lemma : rsum-empty
∀[n,m:ℤ]. ∀[x:Top]. Σ{x[i] | n≤i≤m} ~ r0 supposing m < n
Proof
Definitions occuring in Statement :
rsum: Σ{x[k] | n≤k≤m}
,
int-to-real: r(n)
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
natural_number: $n
,
int: ℤ
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
rsum: Σ{x[k] | n≤k≤m}
,
has-value: (a)↓
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
callbyvalueall: callbyvalueall,
evalall: evalall(t)
,
map: map(f;as)
,
list_ind: list_ind,
nil: []
,
it: ⋅
Lemmas referenced :
top_wf,
less_than_wf,
radd_list_nil_lemma,
map_nil_lemma,
int_formula_prop_wf,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
intformless_wf,
itermConstant_wf,
itermVar_wf,
itermAdd_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__le,
from-upto-nil,
int-value-type,
value-type-has-value
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
callbyvalueReduce,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
intEquality,
independent_isectElimination,
hypothesis,
hypothesisEquality,
because_Cache,
addEquality,
natural_numberEquality,
dependent_functionElimination,
unionElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
sqleReflexivity,
sqequalAxiom,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[n,m:\mBbbZ{}]. \mforall{}[x:Top]. \mSigma{}\{x[i] | n\mleq{}i\mleq{}m\} \msim{} r0 supposing m < n
Date html generated:
2016_05_18-AM-07_46_08
Last ObjectModification:
2016_01_17-AM-02_08_42
Theory : reals
Home
Index