Nuprl Lemma : from-upto-nil

[n,m:ℤ].  [n, m) [] supposing m ≤ n


Proof




Definitions occuring in Statement :  from-upto: [n, m) nil: [] uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: uiff: uiff(P;Q) and: P ∧ Q
Lemmas referenced :  from-upto-is-nil le_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache intEquality introduction sqequalAxiom productElimination independent_isectElimination

Latex:
\mforall{}[n,m:\mBbbZ{}].    [n,  m)  \msim{}  []  supposing  m  \mleq{}  n



Date html generated: 2016_05_14-PM-01_59_56
Last ObjectModification: 2015_12_26-PM-05_13_33

Theory : list_1


Home Index