Nuprl Lemma : from-upto-nil
∀[n,m:ℤ].  [n, m) ~ [] supposing m ≤ n
Proof
Definitions occuring in Statement : 
from-upto: [n, m)
, 
nil: []
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
Lemmas referenced : 
from-upto-is-nil, 
le_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
intEquality, 
introduction, 
sqequalAxiom, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}[n,m:\mBbbZ{}].    [n,  m)  \msim{}  []  supposing  m  \mleq{}  n
Date html generated:
2016_05_14-PM-01_59_56
Last ObjectModification:
2015_12_26-PM-05_13_33
Theory : list_1
Home
Index