Nuprl Lemma : real-vec-sep-iff-dot-product

n:ℕ. ∀x,y:ℝ^n.  (x ≠ ⇐⇒ r0 < x⋅x)


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b dot-product: x⋅y real-vec-sub: Y real-vec: ^n rless: x < y int-to-real: r(n) nat: all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T rev_implies:  Q real-vec: ^n uall: [x:A]. B[x] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B nat: prop: exists: x:A. B[x] subtype_rel: A ⊆B less_than: a < b squash: T real-vec-sub: Y rsub: y radd: b accelerate: accelerate(k;f) uimplies: supposing a uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  real-vec-sep-iff int-to-real_wf int_seg_wf real-vec-sep_wf real-vec-sub_wf real-vec-sep-0-iff rless_wf dot-product_wf real-vec_wf istype-nat rabs_wf rsub_wf subtype_rel_self real_wf itermSubtract_wf itermVar_wf itermConstant_wf rless_functionality req_weakening rabs-difference-symmetry rabs_functionality req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution productElimination thin independent_functionElimination introduction extract_by_obid dependent_functionElimination hypothesisEquality hypothesis because_Cache sqequalRule lambdaEquality_alt isectElimination setElimination rename universeIsType natural_numberEquality independent_pairFormation promote_hyp dependent_pairFormation_alt applyEquality functionEquality imageElimination productIsType independent_isectElimination approximateComputation int_eqEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt voidElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbR{}\^{}n.    (x  \mneq{}  y  \mLeftarrow{}{}\mRightarrow{}  r0  <  y  -  x\mcdot{}y  -  x)



Date html generated: 2019_10_30-AM-08_44_13
Last ObjectModification: 2019_07_29-PM-00_36_48

Theory : reals


Home Index