Nuprl Lemma : dot-product-linearity1-sub
∀[n:ℕ]. ∀[x,y,z:ℝ^n].  ((x - y⋅z = (x⋅z - y⋅z)) ∧ (z⋅x - y = (z⋅x - z⋅y)))
Proof
Definitions occuring in Statement : 
dot-product: x⋅y
, 
real-vec-sub: X - Y
, 
real-vec: ℝ^n
, 
rsub: x - y
, 
req: x = y
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
dot-product: x⋅y
, 
real-vec-sub: X - Y
, 
real-vec: ℝ^n
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rsum_wf, 
subtract_wf, 
rmul_wf, 
rsub_wf, 
int_seg_wf, 
subtract-add-cancel, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
lelt_wf, 
real_wf, 
nat_wf, 
rsum_functionality, 
rmul-rsub-distrib, 
intformle_wf, 
itermSubtract_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
le_wf, 
req_functionality, 
req_weakening, 
req_inversion, 
rsum_linearity-rsub
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
addEquality, 
independent_functionElimination, 
functionEquality, 
lambdaFormation
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y,z:\mBbbR{}\^{}n].    ((x  -  y\mcdot{}z  =  (x\mcdot{}z  -  y\mcdot{}z))  \mwedge{}  (z\mcdot{}x  -  y  =  (z\mcdot{}x  -  z\mcdot{}y)))
Date html generated:
2016_10_26-AM-10_20_36
Last ObjectModification:
2016_09_28-PM-09_12_36
Theory : reals
Home
Index