Nuprl Lemma : dot-product-linearity1-sub

[n:ℕ]. ∀[x,y,z:ℝ^n].  ((x y⋅(x⋅y⋅z)) ∧ (z⋅(z⋅z⋅y)))


Proof




Definitions occuring in Statement :  dot-product: x⋅y real-vec-sub: Y real-vec: ^n rsub: y req: y nat: uall: [x:A]. B[x] and: P ∧ Q
Definitions unfolded in proof :  dot-product: x⋅y real-vec-sub: Y real-vec: ^n uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: so_apply: x[s] pointwise-req: x[k] y[k] for k ∈ [n,m] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rsum_wf subtract_wf rmul_wf rsub_wf int_seg_wf subtract-add-cancel nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf real_wf nat_wf rsum_functionality rmul-rsub-distrib intformle_wf itermSubtract_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_constant_lemma le_wf req_functionality req_weakening req_inversion rsum_linearity-rsub
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalHypSubstitution productElimination thin independent_pairEquality extract_by_obid isectElimination natural_numberEquality setElimination rename because_Cache lambdaEquality applyEquality functionExtensionality hypothesisEquality dependent_set_memberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll addEquality independent_functionElimination functionEquality lambdaFormation

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y,z:\mBbbR{}\^{}n].    ((x  -  y\mcdot{}z  =  (x\mcdot{}z  -  y\mcdot{}z))  \mwedge{}  (z\mcdot{}x  -  y  =  (z\mcdot{}x  -  z\mcdot{}y)))



Date html generated: 2016_10_26-AM-10_20_36
Last ObjectModification: 2016_09_28-PM-09_12_36

Theory : reals


Home Index