Nuprl Lemma : approx-fixpoint-unit-ball-2

n:ℕ. ∀f:{f:B(n) ⟶ B(n)| (∀x,y:B(n).  (req-vec(n;x;y)  req-vec(n;f x;f y))) ∧ (∀x:B(n). x ≠ x))} . ∀e:{e:ℝ
                                                                                                             r0 < e} .
  ∃p:B(n). (↓d(f p;p) < e)


Proof




Definitions occuring in Statement :  real-unit-ball: B(n) real-vec-sep: a ≠ b real-vec-dist: d(x;y) req-vec: req-vec(n;x;y) rless: x < y int-to-real: r(n) real: nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A squash: T implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] prop: and: P ∧ Q implies:  Q real-unit-ball: B(n) subtype_rel: A ⊆B not: ¬A false: False exists: x:A. B[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True le: A ≤ B nat_plus: + ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) real-ball: B(n;r) rneq: x ≠ y rdiv: (x/y) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 rless: x < y sq_exists: x:A [B[x]] rge: x ≥ y
Lemmas referenced :  find-approx-fp_wf real_wf rless_wf int-to-real_wf real-unit-ball_wf req-vec_wf real-vec-sep_wf istype-void istype-nat real-vec-dist_wf decidable__equal_int subtype_base_sq int_subtype_base rless-int istype-le real-ball-uniform-continuity nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-less_than subtype_rel_self subtype_rel_set real-vec_wf rleq_wf real-vec-norm_wf nat_wf set_subtype_base le_wf decidable__le sq_stable__rless rless_functionality real-vec-dist-dim0 req_weakening subtype_rel_dep_function real-ball_wf rdiv_wf rmul_preserves_rless rmul_wf itermSubtract_wf itermMultiply_wf rinv_wf2 req_transitivity rmul-rinv3 req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma rless-int-fractions2 nat_plus_properties int_term_value_mul_lemma rleq_weakening_rless rless_functionality_wrt_implies rleq_weakening_equal radd-preserves-rless rminus_wf radd_wf itermAdd_wf itermMinus_wf real_term_value_add_lemma real_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis setIsType universeIsType isectElimination natural_numberEquality functionIsType because_Cache sqequalRule productIsType setElimination rename applyEquality lambdaEquality_alt dependent_set_memberEquality_alt independent_pairFormation productElimination promote_hyp inhabitedIsType equalityTransitivity equalitySymmetry unionElimination instantiate cumulativity intEquality independent_isectElimination independent_functionElimination dependent_pairFormation_alt imageMemberEquality baseClosed voidElimination approximateComputation int_eqEquality isect_memberEquality_alt imageElimination closedConclusion inrFormation_alt multiplyEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:\{f:B(n)  {}\mrightarrow{}  B(n)| 
                    (\mforall{}x,y:B(n).    (req-vec(n;x;y)  {}\mRightarrow{}  req-vec(n;f  x;f  y)))  \mwedge{}  (\mneg{}(\mforall{}x:B(n).  f  x  \mneq{}  x))\}  .
\mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
    \mexists{}p:B(n).  (\mdownarrow{}d(f  p;p)  <  e)



Date html generated: 2019_10_30-AM-11_29_30
Last ObjectModification: 2019_07_30-PM-00_58_58

Theory : real!vectors


Home Index