Nuprl Lemma : approx-fixpoint-unit-ball-2
∀n:ℕ. ∀f:{f:B(n) ⟶ B(n)| (∀x,y:B(n).  (req-vec(n;x;y) 
⇒ req-vec(n;f x;f y))) ∧ (¬(∀x:B(n). f x ≠ x))} . ∀e:{e:ℝ| 
                                                                                                             r0 < e} .
  ∃p:B(n). (↓d(f p;p) < e)
Proof
Definitions occuring in Statement : 
real-unit-ball: B(n)
, 
real-vec-sep: a ≠ b
, 
real-vec-dist: d(x;y)
, 
req-vec: req-vec(n;x;y)
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
real-unit-ball: B(n)
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
le: A ≤ B
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
real-ball: B(n;r)
, 
rneq: x ≠ y
, 
rdiv: (x/y)
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
rge: x ≥ y
Lemmas referenced : 
find-approx-fp_wf, 
real_wf, 
rless_wf, 
int-to-real_wf, 
real-unit-ball_wf, 
req-vec_wf, 
real-vec-sep_wf, 
istype-void, 
istype-nat, 
real-vec-dist_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
rless-int, 
istype-le, 
real-ball-uniform-continuity, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-less_than, 
subtype_rel_self, 
subtype_rel_set, 
real-vec_wf, 
rleq_wf, 
real-vec-norm_wf, 
nat_wf, 
set_subtype_base, 
le_wf, 
decidable__le, 
sq_stable__rless, 
rless_functionality, 
real-vec-dist-dim0, 
req_weakening, 
subtype_rel_dep_function, 
real-ball_wf, 
rdiv_wf, 
rmul_preserves_rless, 
rmul_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
rinv_wf2, 
req_transitivity, 
rmul-rinv3, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
rless-int-fractions2, 
nat_plus_properties, 
int_term_value_mul_lemma, 
rleq_weakening_rless, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
radd-preserves-rless, 
rminus_wf, 
radd_wf, 
itermAdd_wf, 
itermMinus_wf, 
real_term_value_add_lemma, 
real_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setIsType, 
universeIsType, 
isectElimination, 
natural_numberEquality, 
functionIsType, 
because_Cache, 
sqequalRule, 
productIsType, 
setElimination, 
rename, 
applyEquality, 
lambdaEquality_alt, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productElimination, 
promote_hyp, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
imageMemberEquality, 
baseClosed, 
voidElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
imageElimination, 
closedConclusion, 
inrFormation_alt, 
multiplyEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:\{f:B(n)  {}\mrightarrow{}  B(n)| 
                    (\mforall{}x,y:B(n).    (req-vec(n;x;y)  {}\mRightarrow{}  req-vec(n;f  x;f  y)))  \mwedge{}  (\mneg{}(\mforall{}x:B(n).  f  x  \mneq{}  x))\}  .
\mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
    \mexists{}p:B(n).  (\mdownarrow{}d(f  p;p)  <  e)
Date html generated:
2019_10_30-AM-11_29_30
Last ObjectModification:
2019_07_30-PM-00_58_58
Theory : real!vectors
Home
Index