Nuprl Lemma : real-ball-uniform-continuity
∀k:ℕ. ∀n:ℕ+. ∀f:{f:B(n;r1) ⟶ ℝ^k| ∀x,y:B(n;r1).  (req-vec(n;x;y) ⇒ req-vec(k;f x;f y))} . ∀e:{e:ℝ| r0 < e} .
  ∃d:ℕ+. ∀x,y:B(n;r1).  ((d(x;y) ≤ (r1/r(d))) ⇒ (d(f x;f y) ≤ e))
Proof
Definitions occuring in Statement : 
real-ball: B(n;r), 
real-vec-dist: d(x;y), 
req-vec: req-vec(n;x;y), 
real-vec: ℝ^n, 
rdiv: (x/y), 
rleq: x ≤ y, 
rless: x < y, 
int-to-real: r(n), 
real: ℝ, 
nat_plus: ℕ+, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
homeomorphic+: homeomorphic+(X;dX;Y;dY), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
iproper: iproper(I), 
top: Top, 
less_than: a < b, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
nat_plus: ℕ+, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
real-ball: B(n;r), 
mfun: FUN(X ⟶ Y), 
compose: f o g, 
uiff: uiff(P;Q), 
is-mfun: f:FUN(X;Y), 
so_apply: x[s], 
meq: x ≡ y, 
real-vec-dist: d(x;y), 
real-vec-norm: ||x||, 
rsqrt: rsqrt(x), 
rroot: rroot(i;x), 
ifthenelse: if b then t else f fi , 
isEven: isEven(n), 
eq_int: (i =z j), 
modulus: a mod n, 
remainder: n rem m, 
btrue: tt, 
rroot-abs: rroot-abs(i;x), 
fastexp: i^n, 
efficient-exp-ext, 
genrec: genrec, 
subtract: n - m, 
rn-metric: rn-metric(n), 
interval-vec: I^n, 
mdist: mdist(d;x;y), 
rneq: x ≠ y, 
guard: {T}, 
metric-leq: d1 ≤ d2, 
scale-metric: c*d, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
req_int_terms: t1 ≡ t2, 
rdiv: (x/y), 
sq_stable: SqStable(P)
Lemmas referenced : 
unit-balls-homeomorphic+-2, 
interval-cube-uniform-continuity, 
rccint-icompact, 
int-to-real_wf, 
rleq-int, 
istype-false, 
rccint_wf, 
icompact_wf, 
left_endpoint_rccint_lemma, 
istype-void, 
right_endpoint_rccint_lemma, 
rless-int, 
i-finite_wf, 
nat_plus_subtype_nat, 
real_wf, 
rless_wf, 
real-ball_wf, 
nat_plus_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
real-vec_wf, 
req-vec_wf, 
nat_plus_wf, 
istype-nat, 
compose_wf, 
interval-vec_wf, 
meq-max-metric, 
real-vec-dist-identity, 
mul_nat_plus, 
rleq_wf, 
real-vec-dist_wf, 
rdiv_wf, 
multiply_nat_plus, 
decidable__lt, 
itermMultiply_wf, 
intformeq_wf, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
rn-metric-leq-max-metric, 
rmul_wf, 
mdist_wf, 
max-metric_wf, 
metric-on-subtype, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rmul_preserves_rleq2, 
itermSubtract_wf, 
rleq_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rmul_preserves_rleq, 
rinv_wf2, 
req_transitivity, 
rmul-rinv, 
req_weakening, 
req_functionality, 
rmul_functionality, 
req_inversion, 
rmul-int, 
sq_stable__rleq, 
rleq_weakening, 
real-vec-dist_functionality, 
rn-metric-meq, 
req-vec_weakening, 
req-vec_functionality, 
efficient-exp-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
isectElimination, 
minusEquality, 
natural_numberEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
independent_pairFormation, 
because_Cache, 
dependent_set_memberEquality_alt, 
universeIsType, 
isect_memberEquality_alt, 
voidElimination, 
imageMemberEquality, 
baseClosed, 
applyEquality, 
setIsType, 
functionIsType, 
setElimination, 
rename, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
closedConclusion, 
multiplyEquality, 
inrFormation_alt, 
applyLambdaEquality, 
equalityIstype, 
promote_hyp, 
imageElimination
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}f:\{f:B(n;r1)  {}\mrightarrow{}  \mBbbR{}\^{}k|  \mforall{}x,y:B(n;r1).    (req-vec(n;x;y)  {}\mRightarrow{}  req-vec(k;f  x;f  y))\}  .
\mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
    \mexists{}d:\mBbbN{}\msupplus{}.  \mforall{}x,y:B(n;r1).    ((d(x;y)  \mleq{}  (r1/r(d)))  {}\mRightarrow{}  (d(f  x;f  y)  \mleq{}  e))
Date html generated:
2019_10_30-AM-11_27_05
Last ObjectModification:
2019_07_08-PM-05_42_26
Theory : real!vectors
Home
Index