Nuprl Lemma : max-metric_wf

[n:ℕ]. (max-metric(n) ∈ metric(ℝ^n))


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) real-vec: ^n metric: metric(X) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  max-metric: max-metric(n) uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: metric: metric(X) le: A ≤ B less_than': less_than'(a;b) cand: c∧ B uiff: uiff(P;Q) squash: T decidable: Dec(P) or: P ∨ Q real-vec: ^n bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B true: True rev_uimplies: rev_uimplies(P;Q) absval: |i| req_int_terms: t1 ≡ t2 rge: x ≥ y
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than primrec0_lemma int-to-real_wf real-vec_wf istype-le trivial-rleq-radd rleq_weakening_equal req_weakening rleq_wf radd_wf req_wf subtract-1-ge-0 primrec_wf real_wf decidable__le intformnot_wf int_formula_prop_not_lemma rmax_wf rabs_wf rsub_wf int_seg_wf primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-nat subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__lt real-vec-subtype rmax-req2 rleq-int istype-false req_functionality rmax_functionality req_transitivity rabs_functionality squash_wf true_wf rabs-int req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma rleq_functionality_wrt_implies r-triangle-inequality2 rleq_functionality radd_functionality rabs-difference-symmetry rmax_lb radd_functionality_wrt_rleq rleq-rmax
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType dependent_set_memberEquality_alt because_Cache productElimination productIsType functionIsType applyEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination unionElimination closedConclusion equalityElimination equalityIstype promote_hyp instantiate cumulativity minusEquality

Latex:
\mforall{}[n:\mBbbN{}].  (max-metric(n)  \mmember{}  metric(\mBbbR{}\^{}n))



Date html generated: 2019_10_30-AM-08_35_26
Last ObjectModification: 2019_10_02-AM-11_01_41

Theory : reals


Home Index