Nuprl Lemma : rn-metric-meq
∀[n:ℕ]. ∀[x,y:ℝ^n].  uiff(x ≡ y;req-vec(n;x;y))
Proof
Definitions occuring in Statement : 
rn-metric: rn-metric(n)
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
meq: x ≡ y
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
rn-metric: rn-metric(n)
, 
meq: x ≡ y
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
req-vec: req-vec(n;x;y)
, 
all: ∀x:A. B[x]
, 
real-vec: ℝ^n
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
real-vec-dist-identity, 
req_witness, 
req_wf, 
real-vec-dist_wf, 
int-to-real_wf, 
req-vec_wf, 
real-vec_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
independent_pairFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
hypothesis, 
lambdaEquality_alt, 
dependent_functionElimination, 
applyEquality, 
independent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    uiff(x  \mequiv{}  y;req-vec(n;x;y))
Date html generated:
2019_10_30-AM-08_32_16
Last ObjectModification:
2019_10_02-AM-09_45_12
Theory : reals
Home
Index