Nuprl Lemma : real-vec-dist-identity

[n:ℕ]. ∀[x,y:ℝ^n].  uiff(d(x;y) r0;req-vec(n;x;y))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) req-vec: req-vec(n;x;y) real-vec: ^n req: y int-to-real: r(n) nat: uiff: uiff(P;Q) uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a req-vec: req-vec(n;x;y) all: x:A. B[x] real-vec: ^n implies:  Q nat: prop: subtype_rel: A ⊆B real-vec-dist: d(x;y) real-vec-norm: ||x|| iff: ⇐⇒ Q dot-product: x⋅y not: ¬A rneq: x ≠ y or: P ∨ Q rev_implies:  Q guard: {T} cand: c∧ B so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k rless: x < y sq_exists: x:{A| B[x]} nat_plus: + ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top le: A ≤ B less_than: a < b so_apply: x[s] real: sq_stable: SqStable(P) squash: T pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] rge: x ≥ y real-vec-sub: Y rsub: y real-vec-mul: a*X rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness int_seg_wf req_wf real-vec-dist_wf real_wf rleq_wf int-to-real_wf req-vec_wf real-vec_wf nat_wf rsqrt-is-zero dot-product-nonneg real-vec-sub_wf dot-product_wf equal_wf not-rneq rneq_wf rmul-is-positive rless_wf rsum-split subtract_wf rmul_wf subtract-add-cancel nat_plus_properties int_seg_properties nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf sq_stable__less_than decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma itermSubtract_wf int_term_value_subtract_lemma rsum_wf radd_wf itermAdd_wf int_term_value_add_lemma req_functionality req_weakening rsum_nonneg square-nonneg le_wf rless_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq rsum-split-last rless_functionality radd_functionality trivial-rless-radd rless_transitivity1 rleq_weakening rless_irreflexivity radd-preserves-req rsub_wf rminus_wf uiff_transitivity radd-ac radd_comm radd-rminus-both radd-zero-both real-vec-norm_functionality real-vec-mul_wf rsub_functionality rmul_functionality rmul-zero-both real-vec-norm_wf rabs_wf req_transitivity real-vec-norm-mul rabs-of-nonneg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality independent_functionElimination hypothesis natural_numberEquality setElimination rename setEquality because_Cache productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality lambdaFormation independent_isectElimination unionElimination inrFormation productEquality inlFormation dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll addEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    uiff(d(x;y)  =  r0;req-vec(n;x;y))



Date html generated: 2017_10_03-AM-10_55_45
Last ObjectModification: 2017_07_28-AM-08_21_14

Theory : reals


Home Index