Nuprl Lemma : rsqrt-is-zero

[x:{x:ℝr0 ≤ x} ]. (rsqrt(x) r0 ⇐⇒ r0)


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rleq: x ≤ y req: y int-to-real: r(n) real: uall: [x:A]. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: subtype_rel: A ⊆B rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] uimplies: supposing a uiff: uiff(P;Q)
Lemmas referenced :  req_witness int-to-real_wf req_wf rsqrt_wf rleq_wf real_wf rmul_wf set_wf square-is-zero iff_wf req_functionality rsqrt_squared req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality extract_by_obid isectElimination setElimination rename hypothesis natural_numberEquality independent_functionElimination dependent_set_memberEquality applyEquality setEquality productEquality addLevel independent_pairFormation impliesFunctionality because_Cache lambdaFormation independent_isectElimination

Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].  (rsqrt(x)  =  r0  \mLeftarrow{}{}\mRightarrow{}  x  =  r0)



Date html generated: 2016_10_26-AM-10_08_06
Last ObjectModification: 2016_09_14-PM-05_36_44

Theory : reals


Home Index