Nuprl Lemma : rsqrt-is-zero
∀[x:{x:ℝ| r0 ≤ x} ]. (rsqrt(x) = r0 
⇐⇒ x = r0)
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x)
, 
rleq: x ≤ y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
Lemmas referenced : 
req_witness, 
int-to-real_wf, 
req_wf, 
rsqrt_wf, 
rleq_wf, 
real_wf, 
rmul_wf, 
set_wf, 
square-is-zero, 
iff_wf, 
req_functionality, 
rsqrt_squared, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
independent_functionElimination, 
dependent_set_memberEquality, 
applyEquality, 
setEquality, 
productEquality, 
addLevel, 
independent_pairFormation, 
impliesFunctionality, 
because_Cache, 
lambdaFormation, 
independent_isectElimination
Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].  (rsqrt(x)  =  r0  \mLeftarrow{}{}\mRightarrow{}  x  =  r0)
Date html generated:
2016_10_26-AM-10_08_06
Last ObjectModification:
2016_09_14-PM-05_36_44
Theory : reals
Home
Index