Nuprl Lemma : meq-max-metric

[n:ℕ]. ∀[x,y:ℝ^n].  uiff(x ≡ y;req-vec(n;x;y))


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) req-vec: req-vec(n;x;y) real-vec: ^n meq: x ≡ y nat: uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T req-vec: req-vec(n;x;y) all: x:A. B[x] real-vec: ^n implies:  Q prop: meq: x ≡ y subtype_rel: A ⊆B metric: metric(X) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rn-metric-meq req_witness meq_wf real-vec_wf rn-metric_wf int-to-real_wf req-vec_wf iff_weakening_uiff max-metric_wf meq-max-metric-iff-meq-rn-metric istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut independent_pairFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_isectElimination hypothesis sqequalRule lambdaEquality_alt dependent_functionElimination applyEquality independent_functionElimination functionIsTypeImplies inhabitedIsType universeIsType setElimination rename equalityTransitivity equalitySymmetry natural_numberEquality promote_hyp because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    uiff(x  \mequiv{}  y;req-vec(n;x;y))



Date html generated: 2019_10_30-AM-08_41_26
Last ObjectModification: 2019_10_02-AM-11_05_44

Theory : reals


Home Index