Nuprl Lemma : meq-max-metric-iff-meq-rn-metric

[n:ℕ]. ∀[x,y:ℝ^n].  uiff(x ≡ y;x ≡ y)


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) rn-metric: rn-metric(n) real-vec: ^n meq: x ≡ y nat: uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T meq: x ≡ y mdist: mdist(d;x;y) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q prop: metric-leq: d1 ≤ d2 all: x:A. B[x] nat: iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} scale-metric: c*d req_int_terms: t1 ≡ t2
Lemmas referenced :  rn-metric-leq-max-metric max-metric-leq-rn-metric rleq_antisymmetry mdist_wf real-vec_wf rn-metric_wf int-to-real_wf mdist-nonneg req_witness req_wf max-metric_wf istype-nat scale-metric_wf rleq-int nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rleq_wf rleq_functionality_wrt_implies rleq_weakening_equal rmul_wf rleq_weakening itermSubtract_wf itermMultiply_wf req-iff-rsub-is-0 rleq_functionality rmul_functionality req_weakening real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache independent_pairFormation hypothesis natural_numberEquality independent_isectElimination independent_functionElimination universeIsType dependent_functionElimination setElimination rename productElimination unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule dependent_set_memberEquality_alt equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    uiff(x  \mequiv{}  y;x  \mequiv{}  y)



Date html generated: 2019_10_30-AM-08_40_59
Last ObjectModification: 2019_10_02-AM-11_05_25

Theory : reals


Home Index