Nuprl Lemma : max-metric-leq-rn-metric

[n:ℕ]. max-metric(n) ≤ rn-metric(n)


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) rn-metric: rn-metric(n) real-vec: ^n metric-leq: d1 ≤ d2 nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  rn-metric: rn-metric(n) max-metric: max-metric(n) metric-leq: d1 ≤ d2 mdist: mdist(d;x;y) uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt less_than': less_than'(a;b) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q decidable: Dec(P) real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B cand: c∧ B nat_plus: + rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than le_witness_for_triv primrec-unroll real-vec-dist-nonneg istype-le real-vec_wf subtract-1-ge-0 lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf rmax_lb primrec_wf real_wf subtract_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int-to-real_wf rmax_wf rabs_wf rsub_wf decidable__lt int_seg_wf real-vec-dist_wf rleq-real-vec-dist istype-nat real-vec-subtype real-vec-dist-monotone-in-dim rleq_functionality_wrt_implies rleq_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType productElimination equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType because_Cache dependent_set_memberEquality_alt unionElimination equalityElimination equalityIstype promote_hyp instantiate cumulativity closedConclusion applyEquality productIsType

Latex:
\mforall{}[n:\mBbbN{}].  max-metric(n)  \mleq{}  rn-metric(n)



Date html generated: 2019_10_30-AM-08_36_47
Last ObjectModification: 2019_10_02-AM-11_02_37

Theory : reals


Home Index