Nuprl Lemma : real-vec-dist-monotone-in-dim

[m:ℕ+]. ∀[p,q:ℝ^m].  (d(p;q) ≤ d(p;q))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec: ^n rleq: x ≤ y nat_plus: + uall: [x:A]. B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: subtype_rel: A ⊆B real-vec-dist: d(x;y) le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) dot-product: x⋅y rleq: x ≤ y rnonneg: rnonneg(x) so_lambda: λ2x.t[x] real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T so_apply: x[s] req_int_terms: t1 ≡ t2
Lemmas referenced :  square-rleq-implies real-vec-dist_wf subtract_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le real-vec-subtype nat_plus_subtype_nat real-vec-dist-nonneg rleq_functionality rnexp_wf real-vec-norm_wf real-vec-sub_wf dot-product_wf real-vec-norm-squared le_witness_for_triv real-vec_wf nat_plus_wf rsum-split-last rsum_wf rmul_wf int_seg_properties decidable__lt itermAdd_wf int_term_value_add_lemma istype-less_than int_seg_wf radd_wf subtract-add-cancel radd-preserves-rleq rminus_wf int-to-real_wf itermMinus_wf itermMultiply_wf square-nonneg req_weakening req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_mul_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination dependent_set_memberEquality_alt setElimination rename because_Cache hypothesis natural_numberEquality hypothesisEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType applyEquality inhabitedIsType equalityTransitivity equalitySymmetry lambdaFormation_alt productElimination equalityIstype functionIsTypeImplies isectIsTypeImplies imageElimination productIsType addEquality closedConclusion

Latex:
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[p,q:\mBbbR{}\^{}m].    (d(p;q)  \mleq{}  d(p;q))



Date html generated: 2019_10_30-AM-08_30_55
Last ObjectModification: 2019_06_28-PM-03_24_15

Theory : reals


Home Index