Nuprl Lemma : real-vec-dist-monotone-in-dim
∀[m:ℕ+]. ∀[p,q:ℝ^m].  (d(p;q) ≤ d(p;q))
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y)
, 
real-vec: ℝ^n
, 
rleq: x ≤ y
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
real-vec-dist: d(x;y)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
dot-product: x⋅y
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
so_lambda: λ2x.t[x]
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
so_apply: x[s]
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
square-rleq-implies, 
real-vec-dist_wf, 
subtract_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
real-vec-subtype, 
nat_plus_subtype_nat, 
real-vec-dist-nonneg, 
rleq_functionality, 
rnexp_wf, 
real-vec-norm_wf, 
real-vec-sub_wf, 
dot-product_wf, 
real-vec-norm-squared, 
le_witness_for_triv, 
real-vec_wf, 
nat_plus_wf, 
rsum-split-last, 
rsum_wf, 
rmul_wf, 
int_seg_properties, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-less_than, 
int_seg_wf, 
radd_wf, 
subtract-add-cancel, 
radd-preserves-rleq, 
rminus_wf, 
int-to-real_wf, 
itermMinus_wf, 
itermMultiply_wf, 
square-nonneg, 
req_weakening, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_mul_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
hypothesisEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
productElimination, 
equalityIstype, 
functionIsTypeImplies, 
isectIsTypeImplies, 
imageElimination, 
productIsType, 
addEquality, 
closedConclusion
Latex:
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[p,q:\mBbbR{}\^{}m].    (d(p;q)  \mleq{}  d(p;q))
Date html generated:
2019_10_30-AM-08_30_55
Last ObjectModification:
2019_06_28-PM-03_24_15
Theory : reals
Home
Index