Nuprl Lemma : rleq-real-vec-dist
∀[n:ℕ]. ∀[x,y:ℝ^n]. ∀[i:ℕn].  (|(x i) - y i| ≤ d(x;y))
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y)
, 
real-vec: ℝ^n
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
real-vec: ℝ^n
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
real-vec-dist: d(x;y)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
nat: ℕ
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
dot-product: x⋅y
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
rsub: x - y
, 
radd: a + b
, 
accelerate: accelerate(k;f)
, 
real-vec-sub: X - Y
Lemmas referenced : 
square-rleq-implies, 
rabs_wf, 
rsub_wf, 
real-vec-dist_wf, 
real-vec-dist-nonneg, 
le_witness_for_triv, 
int_seg_wf, 
real-vec_wf, 
istype-nat, 
rnexp_wf, 
istype-void, 
istype-le, 
real-vec-norm_wf, 
real-vec-sub_wf, 
dot-product_wf, 
rmul_wf, 
rleq_functionality, 
req_weakening, 
real-vec-norm-squared, 
rabs-rnexp2, 
rnexp2, 
item-rleq-rsum-of-nonneg, 
subtract_wf, 
subtype_rel_self, 
real_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
istype-less_than, 
square-nonneg, 
subtract-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
functionIsTypeImplies, 
universeIsType, 
natural_numberEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
lambdaFormation_alt, 
voidElimination, 
because_Cache, 
imageElimination, 
functionEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
productIsType, 
addEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].  \mforall{}[i:\mBbbN{}n].    (|(x  i)  -  y  i|  \mleq{}  d(x;y))
Date html generated:
2019_10_30-AM-08_30_28
Last ObjectModification:
2019_06_26-PM-06_55_23
Theory : reals
Home
Index