Nuprl Lemma : rabs-rnexp2

[x:ℝ]. (|x|^2 x^2)


Proof




Definitions occuring in Statement :  rabs: |x| rnexp: x^k1 req: y real: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q false: False all: x:A. B[x] uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rnexp_wf istype-void istype-le rabs_wf real_wf rnexp2-nonneg req_weakening req_functionality req_inversion rabs-rnexp rabs-of-nonneg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation sqequalRule lambdaFormation_alt voidElimination hypothesis hypothesisEquality independent_functionElimination universeIsType because_Cache dependent_functionElimination independent_isectElimination productElimination

Latex:
\mforall{}[x:\mBbbR{}].  (|x|\^{}2  =  x\^{}2)



Date html generated: 2019_10_29-AM-09_39_50
Last ObjectModification: 2019_06_25-PM-02_02_31

Theory : reals


Home Index