Nuprl Lemma : rabs-rnexp2
∀[x:ℝ]. (|x|^2 = x^2)
Proof
Definitions occuring in Statement : 
rabs: |x|
, 
rnexp: x^k1
, 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rnexp_wf, 
istype-void, 
istype-le, 
rabs_wf, 
real_wf, 
rnexp2-nonneg, 
req_weakening, 
req_functionality, 
req_inversion, 
rabs-rnexp, 
rabs-of-nonneg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
lambdaFormation_alt, 
voidElimination, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
universeIsType, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[x:\mBbbR{}].  (|x|\^{}2  =  x\^{}2)
Date html generated:
2019_10_29-AM-09_39_50
Last ObjectModification:
2019_06_25-PM-02_02_31
Theory : reals
Home
Index