Nuprl Lemma : metric-on-subtype

[X,Y:Type].  metric(X) ⊆metric(Y) supposing Y ⊆X


Proof




Definitions occuring in Statement :  metric: metric(X) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a subtype_rel: A ⊆B member: t ∈ T metric: metric(X) and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] istype: istype(T) cand: c∧ B prop: guard: {T}
Lemmas referenced :  subtype_rel_dep_function real_wf rleq_wf int-to-real_wf req_wf radd_wf metric_wf subtype_rel_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaEquality_alt sqequalHypSubstitution setElimination thin rename cut dependent_set_memberEquality_alt productElimination functionExtensionality applyEquality hypothesisEquality hypothesis sqequalRule introduction extract_by_obid isectElimination universeIsType inhabitedIsType independent_isectElimination lambdaFormation_alt independent_pairFormation because_Cache productIsType functionIsType natural_numberEquality instantiate universeEquality dependent_functionElimination

Latex:
\mforall{}[X,Y:Type].    metric(X)  \msubseteq{}r  metric(Y)  supposing  Y  \msubseteq{}r  X



Date html generated: 2019_10_29-AM-10_53_16
Last ObjectModification: 2019_10_02-AM-09_34_54

Theory : reals


Home Index