Nuprl Lemma : metric-on-subtype
∀[X,Y:Type].  metric(X) ⊆r metric(Y) supposing Y ⊆r X
Proof
Definitions occuring in Statement : 
metric: metric(X)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
metric: metric(X)
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
istype: istype(T)
, 
cand: A c∧ B
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
subtype_rel_dep_function, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
radd_wf, 
metric_wf, 
subtype_rel_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
dependent_set_memberEquality_alt, 
productElimination, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
introduction, 
extract_by_obid, 
isectElimination, 
universeIsType, 
inhabitedIsType, 
independent_isectElimination, 
lambdaFormation_alt, 
independent_pairFormation, 
because_Cache, 
productIsType, 
functionIsType, 
natural_numberEquality, 
instantiate, 
universeEquality, 
dependent_functionElimination
Latex:
\mforall{}[X,Y:Type].    metric(X)  \msubseteq{}r  metric(Y)  supposing  Y  \msubseteq{}r  X
Date html generated:
2019_10_29-AM-10_53_16
Last ObjectModification:
2019_10_02-AM-09_34_54
Theory : reals
Home
Index