Nuprl Lemma : quadratic-formula1
∀a,b,c:ℝ.
  (a ≠ r0
  
⇒ (r0 ≤ ((b * b) - r(4) * a * c))
  
⇒ (∀x:ℝ. (((x = quadratic1(a;b;c)) ∨ (x = quadratic2(a;b;c))) 
⇒ (((a * x^2) + (b * x) + c) = r0))))
Proof
Definitions occuring in Statement : 
quadratic2: quadratic2(a;b;c)
, 
quadratic1: quadratic1(a;b;c)
, 
rneq: x ≠ y
, 
rleq: x ≤ y
, 
rnexp: x^k1
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
guard: {T}
, 
quadratic2: quadratic2(a;b;c)
, 
quadratic1: quadratic1(a;b;c)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nat: ℕ
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
rsub: x - y
Lemmas referenced : 
rmul_preserves_rless, 
int-to-real_wf, 
rless-int, 
rless_wf, 
rmul_wf, 
rsqrt_wf, 
rsub_wf, 
rleq_wf, 
set_wf, 
real_wf, 
req_wf, 
or_wf, 
rdiv_wf, 
radd_wf, 
rminus_wf, 
equal_wf, 
rneq_wf, 
squash_wf, 
rless_functionality, 
req_weakening, 
rmul-int, 
rmul_comm, 
sq_stable__and, 
sq_stable__rleq, 
sq_stable__req, 
req_witness, 
rmul_preserves_req, 
rnexp_wf, 
false_wf, 
le_wf, 
uiff_transitivity, 
req_functionality, 
req_transitivity, 
rmul-distrib, 
radd_functionality, 
rmul-zero-both, 
req_inversion, 
rmul-assoc, 
rmul-ac, 
rmul_functionality, 
rnexp_functionality, 
rmul-rdiv-cancel, 
radd-assoc, 
radd_comm, 
radd-ac, 
radd-rminus-assoc, 
rnexp2, 
rmul_over_rminus, 
rminus_functionality, 
rminus-rminus, 
rmul-distrib2, 
rminus-as-rmul, 
radd-int, 
radd-preserves-req, 
radd-rminus-both, 
radd-zero-both, 
rmul-identity1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
inlFormation, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
inrFormation, 
dependent_set_memberEquality, 
lambdaEquality, 
productEquality, 
setElimination, 
rename, 
independent_isectElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
multiplyEquality, 
isect_memberEquality, 
promote_hyp, 
imageElimination, 
minusEquality, 
addEquality
Latex:
\mforall{}a,b,c:\mBbbR{}.
    (a  \mneq{}  r0
    {}\mRightarrow{}  (r0  \mleq{}  ((b  *  b)  -  r(4)  *  a  *  c))
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}
                (((x  =  quadratic1(a;b;c))  \mvee{}  (x  =  quadratic2(a;b;c)))  {}\mRightarrow{}  (((a  *  x\^{}2)  +  (b  *  x)  +  c)  =  r0))))
Date html generated:
2017_10_03-AM-10_45_15
Last ObjectModification:
2017_07_28-AM-08_19_13
Theory : reals
Home
Index