Nuprl Lemma : quadratic-formula1

a,b,c:ℝ.
  (a ≠ r0
   (r0 ≤ ((b b) r(4) c))
   (∀x:ℝ(((x quadratic1(a;b;c)) ∨ (x quadratic2(a;b;c)))  (((a x^2) (b x) c) r0))))


Proof




Definitions occuring in Statement :  quadratic2: quadratic2(a;b;c) quadratic1: quadratic1(a;b;c) rneq: x ≠ y rleq: x ≤ y rnexp: x^k1 rsub: y req: y rmul: b radd: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rneq: x ≠ y or: P ∨ Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: guard: {T} quadratic2: quadratic2(a;b;c) quadratic1: quadratic1(a;b;c) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a sq_stable: SqStable(P) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) nat: le: A ≤ B false: False not: ¬A rsub: y
Lemmas referenced :  rmul_preserves_rless int-to-real_wf rless-int rless_wf rmul_wf rsqrt_wf rsub_wf rleq_wf set_wf real_wf req_wf or_wf rdiv_wf radd_wf rminus_wf equal_wf rneq_wf squash_wf rless_functionality req_weakening rmul-int rmul_comm sq_stable__and sq_stable__rleq sq_stable__req req_witness rmul_preserves_req rnexp_wf false_wf le_wf uiff_transitivity req_functionality req_transitivity rmul-distrib radd_functionality rmul-zero-both req_inversion rmul-assoc rmul-ac rmul_functionality rnexp_functionality rmul-rdiv-cancel radd-assoc radd_comm radd-ac radd-rminus-assoc rnexp2 rmul_over_rminus rminus_functionality rminus-rminus rmul-distrib2 rminus-as-rmul radd-int radd-preserves-req radd-rminus-both radd-zero-both rmul-identity1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution unionElimination thin inlFormation introduction extract_by_obid dependent_functionElimination hypothesisEquality isectElimination natural_numberEquality hypothesis independent_functionElimination productElimination sqequalRule independent_pairFormation imageMemberEquality baseClosed inrFormation dependent_set_memberEquality lambdaEquality productEquality setElimination rename independent_isectElimination because_Cache equalityTransitivity equalitySymmetry multiplyEquality isect_memberEquality promote_hyp imageElimination minusEquality addEquality

Latex:
\mforall{}a,b,c:\mBbbR{}.
    (a  \mneq{}  r0
    {}\mRightarrow{}  (r0  \mleq{}  ((b  *  b)  -  r(4)  *  a  *  c))
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}
                (((x  =  quadratic1(a;b;c))  \mvee{}  (x  =  quadratic2(a;b;c)))  {}\mRightarrow{}  (((a  *  x\^{}2)  +  (b  *  x)  +  c)  =  r0))))



Date html generated: 2017_10_03-AM-10_45_15
Last ObjectModification: 2017_07_28-AM-08_19_13

Theory : reals


Home Index