Step * 1 1 1 1 1 of Lemma unit-balls-homeomorphic+


1. : ℕ+
2. λi.r0 ∈ ℝ^n
3. {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1}  ⊆{p:ℝ^n| ||p|| ≤ r1} 
4. {p:ℝ^n| ||p|| ≤ r1}  ⊆{q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} 
5. ∀p:ℝ^n. (r0 < ||p|| ⇐⇒ r0 < mdist(max-metric(n);λi.r0;p))
6. : ℝ^n ⟶ ℝ^n
7. ∀p:ℝ^n. (req-vec(n;p;λi.r0)  p ≡ λi.r0)
8. ∀p:{p:ℝ^n| r0 < mdist(max-metric(n);λi.r0;p)} p ≡ p.(||p||/mdist(max-metric(n);p;λi.r0))*p) p
9. g:FUN(ℝ^n;ℝ^n)
10. : ℝ^n ⟶ ℝ^n
11. ∀p:ℝ^n. (req-vec(n;p;λi.r0)  p ≡ λi.r0)
12. ∀p:{p:ℝ^n| r0 < ||p||} p ≡ p.(mdist(max-metric(n);λi.r0;p)/||p||)*p) p
13. h:FUN(ℝ^n;ℝ^n)
14. : ℝ^n
15. [%22] mdist(rn-metric(n);λi.r0;x) ≤ r1
16. r0 < ||x||
⊢ (g x) ≡ x
BY
((D With ⌜x⌝  THENA Auto) THEN Reduce -1) }

1
1. : ℕ+
2. λi.r0 ∈ ℝ^n
3. {q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1}  ⊆{p:ℝ^n| ||p|| ≤ r1} 
4. {p:ℝ^n| ||p|| ≤ r1}  ⊆{q:ℝ^n| mdist(rn-metric(n);λi.r0;q) ≤ r1} 
5. ∀p:ℝ^n. (r0 < ||p|| ⇐⇒ r0 < mdist(max-metric(n);λi.r0;p))
6. : ℝ^n ⟶ ℝ^n
7. ∀p:ℝ^n. (req-vec(n;p;λi.r0)  p ≡ λi.r0)
8. g:FUN(ℝ^n;ℝ^n)
9. : ℝ^n ⟶ ℝ^n
10. ∀p:ℝ^n. (req-vec(n;p;λi.r0)  p ≡ λi.r0)
11. ∀p:{p:ℝ^n| r0 < ||p||} p ≡ p.(mdist(max-metric(n);λi.r0;p)/||p||)*p) p
12. h:FUN(ℝ^n;ℝ^n)
13. : ℝ^n
14. [%22] mdist(rn-metric(n);λi.r0;x) ≤ r1
15. r0 < ||x||
16. x ≡ (||x||/mdist(max-metric(n);x;λi.r0))*x
⊢ (g x) ≡ x


Latex:


Latex:

1.  n  :  \mBbbN{}\msupplus{}
2.  \mlambda{}i.r0  \mmember{}  \mBbbR{}\^{}n
3.  \{q:\mBbbR{}\^{}n|  mdist(rn-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\}    \msubseteq{}r  \{p:\mBbbR{}\^{}n|  ||p||  \mleq{}  r1\} 
4.  \{p:\mBbbR{}\^{}n|  ||p||  \mleq{}  r1\}    \msubseteq{}r  \{q:\mBbbR{}\^{}n|  mdist(rn-metric(n);\mlambda{}i.r0;q)  \mleq{}  r1\} 
5.  \mforall{}p:\mBbbR{}\^{}n.  (r0  <  ||p||  \mLeftarrow{}{}\mRightarrow{}  r0  <  mdist(max-metric(n);\mlambda{}i.r0;p))
6.  g  :  \mBbbR{}\^{}n  {}\mrightarrow{}  \mBbbR{}\^{}n
7.  \mforall{}p:\mBbbR{}\^{}n.  (req-vec(n;p;\mlambda{}i.r0)  {}\mRightarrow{}  g  p  \mequiv{}  \mlambda{}i.r0)
8.  \mforall{}p:\{p:\mBbbR{}\^{}n|  r0  <  mdist(max-metric(n);\mlambda{}i.r0;p)\} 
          g  p  \mequiv{}  (\mlambda{}p.(||p||/mdist(max-metric(n);p;\mlambda{}i.r0))*p)  p
9.  g:FUN(\mBbbR{}\^{}n;\mBbbR{}\^{}n)
10.  h  :  \mBbbR{}\^{}n  {}\mrightarrow{}  \mBbbR{}\^{}n
11.  \mforall{}p:\mBbbR{}\^{}n.  (req-vec(n;p;\mlambda{}i.r0)  {}\mRightarrow{}  h  p  \mequiv{}  \mlambda{}i.r0)
12.  \mforall{}p:\{p:\mBbbR{}\^{}n|  r0  <  ||p||\}  .  h  p  \mequiv{}  (\mlambda{}p.(mdist(max-metric(n);\mlambda{}i.r0;p)/||p||)*p)  p
13.  h:FUN(\mBbbR{}\^{}n;\mBbbR{}\^{}n)
14.  x  :  \mBbbR{}\^{}n
15.  [\%22]  :  mdist(rn-metric(n);\mlambda{}i.r0;x)  \mleq{}  r1
16.  r0  <  ||x||
\mvdash{}  h  (g  x)  \mequiv{}  x


By


Latex:
((D  8  With  \mkleeneopen{}x\mkleeneclose{}    THENA  Auto)  THEN  Reduce  -1)




Home Index