Step
*
1
1
2
of Lemma
Inorm-bound
1. I : {I:Interval| icompact(I)}
2. f : I ⟶ℝ
3. mc : f[x] continuous for x ∈ I
4. x : {r:ℝ| r ∈ I}
5. ∀e:ℝ. ((r0 < e)
⇒ (∃x:ℝ. ((x ∈ |f[x]|(x∈I)) ∧ ((sup{|f[x]||x ∈ I} - e) < x))))
6. |f[x]| ≤ sup{|f[x]||x ∈ I}
⊢ |f[x]| ≤ sup{|f[x]||x ∈ I}
BY
{ Auto⋅ }
Latex:
Latex:
1. I : \{I:Interval| icompact(I)\}
2. f : I {}\mrightarrow{}\mBbbR{}
3. mc : f[x] continuous for x \mmember{} I
4. x : \{r:\mBbbR{}| r \mmember{} I\}
5. \mforall{}e:\mBbbR{}. ((r0 < e) {}\mRightarrow{} (\mexists{}x:\mBbbR{}. ((x \mmember{} |f[x]|(x\mmember{}I)) \mwedge{} ((sup\{|f[x]||x \mmember{} I\} - e) < x))))
6. |f[x]| \mleq{} sup\{|f[x]||x \mmember{} I\}
\mvdash{} |f[x]| \mleq{} sup\{|f[x]||x \mmember{} I\}
By
Latex:
Auto\mcdot{}
Home
Index