Step
*
1
1
1
1
1
1
2
of Lemma
Raabe-test
1. lim n→∞.r1 - (r1/r(n + 1)) = r1 - r0
⊢ lim n→∞.(r(n)/r(n + 1)) = r1
BY
{ (MoveToConcl (-1) THEN BLemma `converges-to_functionality` THEN Auto) }
1
1. n : ℕ@i
⊢ (r1 - (r1/r(n + 1))) = (r(n)/r(n + 1))
Latex:
Latex:
1.  lim  n\mrightarrow{}\minfty{}.r1  -  (r1/r(n  +  1))  =  r1  -  r0
\mvdash{}  lim  n\mrightarrow{}\minfty{}.(r(n)/r(n  +  1))  =  r1
By
Latex:
(MoveToConcl  (-1)  THEN  BLemma  `converges-to\_functionality`  THEN  Auto)
Home
Index