Step
*
1
2
of Lemma
adjacent-full-partition-points
1. I : Interval
2. icompact(I)
3. p : partition(I)
4. i : ℕ||p|| + 1
5. (¬0 < ||p||)
⇒ r0≤right-endpoint(I) - left-endpoint(I)≤partition-mesh(I;p)
6. 0 < ||p||
7. r0≤p[0] - left-endpoint(I)≤partition-mesh(I;p)
8. ∀i:ℕ||p|| - 1. r0≤p[i + 1] - p[i]≤partition-mesh(I;p)
9. r0≤right-endpoint(I) - last(p)≤partition-mesh(I;p)
10. ¬(i = 0 ∈ ℤ)
⊢ r0≤[left-endpoint(I) / (p @ [right-endpoint(I)])][i + 1] - [left-endpoint(I) /
(p @ [right-endpoint(I)])][i]≤partition-mesh(I;p)
BY
{ (RWO "select_cons_tl" 0 THENA Auto) }
1
1. I : Interval
2. icompact(I)
3. p : partition(I)
4. i : ℕ||p|| + 1
5. (¬0 < ||p||)
⇒ r0≤right-endpoint(I) - left-endpoint(I)≤partition-mesh(I;p)
6. 0 < ||p||
7. r0≤p[0] - left-endpoint(I)≤partition-mesh(I;p)
8. ∀i:ℕ||p|| - 1. r0≤p[i + 1] - p[i]≤partition-mesh(I;p)
9. r0≤right-endpoint(I) - last(p)≤partition-mesh(I;p)
10. ¬(i = 0 ∈ ℤ)
⊢ r0≤p @ [right-endpoint(I)][(i + 1) - 1] - p @ [right-endpoint(I)][i - 1]≤partition-mesh(I;p)
Latex:
Latex:
1. I : Interval
2. icompact(I)
3. p : partition(I)
4. i : \mBbbN{}||p|| + 1
5. (\mneg{}0 < ||p||) {}\mRightarrow{} r0\mleq{}right-endpoint(I) - left-endpoint(I)\mleq{}partition-mesh(I;p)
6. 0 < ||p||
7. r0\mleq{}p[0] - left-endpoint(I)\mleq{}partition-mesh(I;p)
8. \mforall{}i:\mBbbN{}||p|| - 1. r0\mleq{}p[i + 1] - p[i]\mleq{}partition-mesh(I;p)
9. r0\mleq{}right-endpoint(I) - last(p)\mleq{}partition-mesh(I;p)
10. \mneg{}(i = 0)
\mvdash{} r0\mleq{}[left-endpoint(I) / (p @ [right-endpoint(I)])][i + 1]
- [left-endpoint(I) / (p @ [right-endpoint(I)])][i]\mleq{}partition-mesh(I;p)
By
Latex:
(RWO "select\_cons\_tl" 0 THENA Auto)
Home
Index