Step
*
1
1
2
1
1
of Lemma
adjacent-partition-points
1. I : Interval
2. icompact(I)
3. p : partition(I)
4. ∀[i:ℕ||full-partition(I;p)|| - 1]
     (frs-non-dec(full-partition(I;p)) 
⇒ r0≤full-partition(I;p)[i + 1] - full-partition(I;p)[i]≤partition-mesh(I;p))
5. frs-non-dec(full-partition(I;p))
6. ∀i:ℕ||p|| + 1. r0≤full-partition(I;p)[i + 1] - full-partition(I;p)[i]≤partition-mesh(I;p)
7. r0≤p @ [right-endpoint(I)][0] - left-endpoint(I)≤partition-mesh(I;p)
8. r0≤[left-endpoint(I) / (p @ [right-endpoint(I)])][||p|| + 1] - [left-endpoint(I) / 
                                                                   (p @ [right-endpoint(I)])][||p||]≤partition-mesh(I;p)
9. 0 < ||p||
⊢ r0≤p[0] - left-endpoint(I)≤partition-mesh(I;p)
BY
{ (RWO "select_append_front" (-3) THEN Auto) }
Latex:
Latex:
1.  I  :  Interval
2.  icompact(I)
3.  p  :  partition(I)
4.  \mforall{}[i:\mBbbN{}||full-partition(I;p)||  -  1]
          (frs-non-dec(full-partition(I;p))
          {}\mRightarrow{}  r0\mleq{}full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]\mleq{}partition-mesh(I;p))
5.  frs-non-dec(full-partition(I;p))
6.  \mforall{}i:\mBbbN{}||p||  +  1.  r0\mleq{}full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]\mleq{}partition-mesh(I;p)
7.  r0\mleq{}p  @  [right-endpoint(I)][0]  -  left-endpoint(I)\mleq{}partition-mesh(I;p)
8.  r0\mleq{}[left-endpoint(I)  /  (p  @  [right-endpoint(I)])][||p||  +  1] 
-  [left-endpoint(I)  /  (p  @  [right-endpoint(I)])][||p||]\mleq{}partition-mesh(I;p)
9.  0  <  ||p||
\mvdash{}  r0\mleq{}p[0]  -  left-endpoint(I)\mleq{}partition-mesh(I;p)
By
Latex:
(RWO  "select\_append\_front"  (-3)  THEN  Auto)
Home
Index