Step * 1 1 2 1 2 1 1 of Lemma adjacent-partition-points


1. Interval
2. icompact(I)
3. partition(I)
4. ∀[i:ℕ||full-partition(I;p)|| 1]
     (frs-non-dec(full-partition(I;p))  r0≤full-partition(I;p)[i 1] full-partition(I;p)[i]≤partition-mesh(I;p))
5. frs-non-dec(full-partition(I;p))
6. ∀i:ℕ||p|| 1. r0≤full-partition(I;p)[i 1] full-partition(I;p)[i]≤partition-mesh(I;p)
7. 0 < ||p||
8. : ℕ||p|| 1
⊢ r0≤p[i 1] p[i]≤partition-mesh(I;p)
BY
(InstHyp [⌜1⌝(-3)⋅ THENA Auto) }

1
1. Interval
2. icompact(I)
3. partition(I)
4. ∀[i:ℕ||full-partition(I;p)|| 1]
     (frs-non-dec(full-partition(I;p))  r0≤full-partition(I;p)[i 1] full-partition(I;p)[i]≤partition-mesh(I;p))
5. frs-non-dec(full-partition(I;p))
6. ∀i:ℕ||p|| 1. r0≤full-partition(I;p)[i 1] full-partition(I;p)[i]≤partition-mesh(I;p)
7. 0 < ||p||
8. : ℕ||p|| 1
9. r0≤full-partition(I;p)[(i 1) 1] full-partition(I;p)[i 1]≤partition-mesh(I;p)
⊢ r0≤p[i 1] p[i]≤partition-mesh(I;p)


Latex:


Latex:

1.  I  :  Interval
2.  icompact(I)
3.  p  :  partition(I)
4.  \mforall{}[i:\mBbbN{}||full-partition(I;p)||  -  1]
          (frs-non-dec(full-partition(I;p))
          {}\mRightarrow{}  r0\mleq{}full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]\mleq{}partition-mesh(I;p))
5.  frs-non-dec(full-partition(I;p))
6.  \mforall{}i:\mBbbN{}||p||  +  1.  r0\mleq{}full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]\mleq{}partition-mesh(I;p)
7.  0  <  ||p||
8.  i  :  \mBbbN{}||p||  -  1
\mvdash{}  r0\mleq{}p[i  +  1]  -  p[i]\mleq{}partition-mesh(I;p)


By


Latex:
(InstHyp  [\mkleeneopen{}i  +  1\mkleeneclose{}]  (-3)\mcdot{}  THENA  Auto)




Home Index