Step
*
1
1
2
1
2
1
1
of Lemma
adjacent-partition-points
1. I : Interval
2. icompact(I)
3. p : partition(I)
4. ∀[i:ℕ||full-partition(I;p)|| - 1]
     (frs-non-dec(full-partition(I;p)) 
⇒ r0≤full-partition(I;p)[i + 1] - full-partition(I;p)[i]≤partition-mesh(I;p))
5. frs-non-dec(full-partition(I;p))
6. ∀i:ℕ||p|| + 1. r0≤full-partition(I;p)[i + 1] - full-partition(I;p)[i]≤partition-mesh(I;p)
7. 0 < ||p||
8. i : ℕ||p|| - 1
⊢ r0≤p[i + 1] - p[i]≤partition-mesh(I;p)
BY
{ (InstHyp [⌜i + 1⌝] (-3)⋅ THENA Auto) }
1
1. I : Interval
2. icompact(I)
3. p : partition(I)
4. ∀[i:ℕ||full-partition(I;p)|| - 1]
     (frs-non-dec(full-partition(I;p)) 
⇒ r0≤full-partition(I;p)[i + 1] - full-partition(I;p)[i]≤partition-mesh(I;p))
5. frs-non-dec(full-partition(I;p))
6. ∀i:ℕ||p|| + 1. r0≤full-partition(I;p)[i + 1] - full-partition(I;p)[i]≤partition-mesh(I;p)
7. 0 < ||p||
8. i : ℕ||p|| - 1
9. r0≤full-partition(I;p)[(i + 1) + 1] - full-partition(I;p)[i + 1]≤partition-mesh(I;p)
⊢ r0≤p[i + 1] - p[i]≤partition-mesh(I;p)
Latex:
Latex:
1.  I  :  Interval
2.  icompact(I)
3.  p  :  partition(I)
4.  \mforall{}[i:\mBbbN{}||full-partition(I;p)||  -  1]
          (frs-non-dec(full-partition(I;p))
          {}\mRightarrow{}  r0\mleq{}full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]\mleq{}partition-mesh(I;p))
5.  frs-non-dec(full-partition(I;p))
6.  \mforall{}i:\mBbbN{}||p||  +  1.  r0\mleq{}full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]\mleq{}partition-mesh(I;p)
7.  0  <  ||p||
8.  i  :  \mBbbN{}||p||  -  1
\mvdash{}  r0\mleq{}p[i  +  1]  -  p[i]\mleq{}partition-mesh(I;p)
By
Latex:
(InstHyp  [\mkleeneopen{}i  +  1\mkleeneclose{}]  (-3)\mcdot{}  THENA  Auto)
Home
Index