Step * 1 1 2 1 2 2 1 of Lemma adjacent-partition-points

.....subterm..... T:t
1:n
1. Interval
2. icompact(I)
3. partition(I)
4. ∀[i:ℕ||full-partition(I;p)|| 1]
     (frs-non-dec(full-partition(I;p))  r0≤full-partition(I;p)[i 1] full-partition(I;p)[i]≤partition-mesh(I;p))
5. frs-non-dec(full-partition(I;p))
6. ∀i:ℕ||p|| 1. r0≤full-partition(I;p)[i 1] full-partition(I;p)[i]≤partition-mesh(I;p)
7. r0≤[right-endpoint(I)][0] left-endpoint(I)≤partition-mesh(I;p)
8. r0≤[left-endpoint(I) (p [right-endpoint(I)])][||p|| 1] [left-endpoint(I) 
                                                                   (p [right-endpoint(I)])][||p||]≤partition-mesh(I;p)
9. 0 < ||p||
⊢ right-endpoint(I) [left-endpoint(I) (p [right-endpoint(I)])][||p|| 1] ∈ ℝ
BY
(RWO "select_cons_tl" THEN Auto' THEN (RWO "select_append_back" THEN Auto')⋅}


Latex:


Latex:
.....subterm.....  T:t
1:n
1.  I  :  Interval
2.  icompact(I)
3.  p  :  partition(I)
4.  \mforall{}[i:\mBbbN{}||full-partition(I;p)||  -  1]
          (frs-non-dec(full-partition(I;p))
          {}\mRightarrow{}  r0\mleq{}full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]\mleq{}partition-mesh(I;p))
5.  frs-non-dec(full-partition(I;p))
6.  \mforall{}i:\mBbbN{}||p||  +  1.  r0\mleq{}full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]\mleq{}partition-mesh(I;p)
7.  r0\mleq{}p  @  [right-endpoint(I)][0]  -  left-endpoint(I)\mleq{}partition-mesh(I;p)
8.  r0\mleq{}[left-endpoint(I)  /  (p  @  [right-endpoint(I)])][||p||  +  1] 
-  [left-endpoint(I)  /  (p  @  [right-endpoint(I)])][||p||]\mleq{}partition-mesh(I;p)
9.  0  <  ||p||
\mvdash{}  right-endpoint(I)  =  [left-endpoint(I)  /  (p  @  [right-endpoint(I)])][||p||  +  1]


By


Latex:
(RWO  "select\_cons\_tl"  0  THEN  Auto'  THEN  (RWO  "select\_append\_back"  0  THEN  Auto')\mcdot{})




Home Index