Step
*
1
of Lemma
blend-close-reals
.....assertion.....
1. [k] : ℕ+
⊢ ∀x,y:ℝ. ∀n,m:ℕ+.
((|x - y| ≤ (r1/r(k)))
⇒ regular-seq(x)
⇒ n < k
⇒ (k ≤ m)
⇒ (|(m * (x n)) - n * (y m)| ≤ (6 * (n + m))))
BY
{ (Auto
THEN (Assert |(m * (x n)) - n * (y m)| ≤ (|(m * (x n)) - n * (x m)| + |(n * (x m)) - n * (y m)|) BY
(RWO "int-triangle-inequality<" 0 THEN Auto))
THEN Unfold `regular-int-seq` 7
THEN (RWO "-1" 0 THENA Auto)
THEN (RWO "7" 0 THENA Auto)
THEN (Assert ⌜|(n * (x m)) - n * (y m)| ≤ (4 * (n + m))⌝⋅ THENM (RWO "-1" 0 THEN Auto))
THEN Thin (-1)) }
1
1. k : ℕ+
2. x : ℝ
3. y : ℝ
4. n : ℕ+
5. m : ℕ+
6. |x - y| ≤ (r1/r(k))
7. ∀n,m:ℕ+. (|(m * (x n)) - n * (x m)| ≤ ((2 * 1) * (n + m)))
8. n < k
9. k ≤ m
⊢ |(n * (x m)) - n * (y m)| ≤ (4 * (n + m))
Latex:
Latex:
.....assertion.....
1. [k] : \mBbbN{}\msupplus{}
\mvdash{} \mforall{}x,y:\mBbbR{}. \mforall{}n,m:\mBbbN{}\msupplus{}.
((|x - y| \mleq{} (r1/r(k)))
{}\mRightarrow{} regular-seq(x)
{}\mRightarrow{} n < k
{}\mRightarrow{} (k \mleq{} m)
{}\mRightarrow{} (|(m * (x n)) - n * (y m)| \mleq{} (6 * (n + m))))
By
Latex:
(Auto
THEN (Assert |(m * (x n)) - n * (y m)| \mleq{} (|(m * (x n)) - n * (x m)| + |(n * (x m)) - n * (y m)|) BY
(RWO "int-triangle-inequality<" 0 THEN Auto))
THEN Unfold `regular-int-seq` 7
THEN (RWO "-1" 0 THENA Auto)
THEN (RWO "7" 0 THENA Auto)
THEN (Assert \mkleeneopen{}|(n * (x m)) - n * (y m)| \mleq{} (4 * (n + m))\mkleeneclose{}\mcdot{} THENM (RWO "-1" 0 THEN Auto))
THEN Thin (-1))
Home
Index