Nuprl Lemma : blend-close-reals

[k:ℕ+]. ∀[x,y:ℝ].  ((|x y| ≤ (r1/r(k)))  3-regular-seq(blend-seq(k;x;y)))


Proof




Definitions occuring in Statement :  blend-seq: blend-seq(k;x;y) rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y int-to-real: r(n) real: regular-int-seq: k-regular-seq(f) nat_plus: + uall: [x:A]. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q regular-int-seq: k-regular-seq(f) le: A ≤ B and: P ∧ Q not: ¬A false: False nat_plus: + real: subtype_rel: A ⊆B prop: uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top nat: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) ge: i ≥  sq_type: SQType(T) squash: T true: True so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b less_than': less_than'(a;b) sq_stable: SqStable(P) blend-seq: blend-seq(k;x;y) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  nat_plus_wf less_than'_wf absval_wf subtract_wf le_wf less_than_wf regular-int-seq_wf rleq_wf rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf real_wf nat_wf decidable__le intformle_wf int_formula_prop_le_lemma decidable__equal_int intformeq_wf itermAdd_wf itermSubtract_wf itermMultiply_wf itermMinus_wf int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_subtract_lemma int_term_value_mul_lemma int_term_value_minus_lemma add-is-int-iff subtract-is-int-iff multiply-is-int-iff false_wf and_wf equal_wf le_functionality le_weakening int-triangle-inequality add_functionality_wrt_le subtype_base_sq int_subtype_base squash_wf true_wf absval_mul iff_weakening_equal set_subtype_base absval-non-neg absval_pos nat_plus_subtype_nat close-reals-iff mul_preserves_le mul_cancel_in_le sq_stable__regular-int-seq lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot blend-seq_wf absval-minus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution sqequalRule productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality voidElimination isectElimination multiplyEquality natural_numberEquality addEquality setElimination rename because_Cache applyEquality axiomEquality equalityTransitivity equalitySymmetry independent_isectElimination inrFormation independent_functionElimination unionElimination approximateComputation dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation dependent_set_memberEquality hyp_replacement pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed applyLambdaEquality instantiate cumulativity imageElimination imageMemberEquality universeEquality equalityElimination

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbR{}].    ((|x  -  y|  \mleq{}  (r1/r(k)))  {}\mRightarrow{}  3-regular-seq(blend-seq(k;x;y)))



Date html generated: 2017_10_03-AM-10_08_17
Last ObjectModification: 2017_07_05-PM-03_25_37

Theory : reals


Home Index