Nuprl Lemma : blend-seq_wf
∀[k:ℕ+]. ∀[x,y:ℕ+ ⟶ ℤ].  (blend-seq(k;x;y) ∈ ℕ+ ⟶ ℤ)
Proof
Definitions occuring in Statement : 
blend-seq: blend-seq(k;x;y)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
blend-seq: blend-seq(k;x;y)
, 
nat_plus: ℕ+
Lemmas referenced : 
ifthenelse_wf, 
lt_int_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
intEquality, 
applyEquality, 
functionExtensionality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (blend-seq(k;x;y)  \mmember{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})
Date html generated:
2017_10_03-AM-10_07_58
Last ObjectModification:
2017_07_05-PM-00_33_34
Theory : reals
Home
Index