Step
*
2
1
1
1
1
of Lemma
cantor-to-interval-onto-common
1. a : ℝ
2. b : ℝ
3. [%] : a < b
4. x : ℝ
5. x ∈ [a, b]
6. n : ℕ
7. f : ℕn ⟶ 𝔹
8. x ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]
9. ∀n1:ℕ. ∀f1:{f:ℕn1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;f;n1)), snd(cantor-interval(a;b;f;n1))]} .
     ∃g:{g:ℕn1 + 1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;g;n1 + 1)), snd(cantor-interval(a;b;g;n1 + 1))]} 
      (g = f1 ∈ (ℕn1 ⟶ 𝔹))
10. g : n1:ℕ
⟶ f1:{f:ℕn1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;f;n1)), snd(cantor-interval(a;b;f;n1))]} 
⟶ {g:ℕn1 + 1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;g;n1 + 1)), snd(cantor-interval(a;b;g;n1 + 1))]} 
11. ∀n1:ℕ. ∀f1:{f:ℕn1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;f;n1)), snd(cantor-interval(a;b;f;n1))]} .
      ((g n1 f1) = f1 ∈ (ℕn1 ⟶ 𝔹))
⊢ ∃g:ℕ ⟶ 𝔹. ((cantor-to-interval(a;b;g) = x) ∧ (g = f ∈ (ℕn ⟶ 𝔹)))
BY
{ (Assert ⌜∀m:ℕ
             (primrec(m;f;λi,h. (g (n + i) h)) ∈ {f:ℕn + m ⟶ 𝔹| 
                                              x ∈ [fst(cantor-interval(a;b;f;n + m)), snd(cantor-interval(a;b;f;n
                                                  + m))]} )⌝⋅
   THENA ((D 0 THENA Auto)
          THEN InstLemma `primrec-wf` [⌜λ2m.{f:ℕn + m ⟶ 𝔹| 
                                             x ∈ [fst(cantor-interval(a;b;f;n + m)), snd(cantor-interval(a;b;f;n
                                                 + m))]} ⌝
           ⌜f⌝;⌜λi,h. (g (n + i) h)⌝;⌜m⌝]⋅
          THEN Try (QuickAuto))
   ) }
1
.....wf..... 
1. a : ℝ
2. b : ℝ
3. a < b
4. x : ℝ
5. x ∈ [a, b]
6. n : ℕ
7. f : ℕn ⟶ 𝔹
8. x ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]
9. ∀n1:ℕ. ∀f1:{f:ℕn1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;f;n1)), snd(cantor-interval(a;b;f;n1))]} .
     ∃g:{g:ℕn1 + 1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;g;n1 + 1)), snd(cantor-interval(a;b;g;n1 + 1))]} 
      (g = f1 ∈ (ℕn1 ⟶ 𝔹))
10. g : n1:ℕ
⟶ f1:{f:ℕn1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;f;n1)), snd(cantor-interval(a;b;f;n1))]} 
⟶ {g:ℕn1 + 1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;g;n1 + 1)), snd(cantor-interval(a;b;g;n1 + 1))]} 
11. ∀n1:ℕ. ∀f1:{f:ℕn1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;f;n1)), snd(cantor-interval(a;b;f;n1))]} .
      ((g n1 f1) = f1 ∈ (ℕn1 ⟶ 𝔹))
12. m : ℕ
⊢ f ∈ {f:ℕn + 0 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;f;n + 0)), snd(cantor-interval(a;b;f;n + 0))]} 
2
.....wf..... 
1. a : ℝ
2. b : ℝ
3. a < b
4. x : ℝ
5. x ∈ [a, b]
6. n : ℕ
7. f : ℕn ⟶ 𝔹
8. x ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]
9. ∀n1:ℕ. ∀f1:{f:ℕn1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;f;n1)), snd(cantor-interval(a;b;f;n1))]} .
     ∃g:{g:ℕn1 + 1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;g;n1 + 1)), snd(cantor-interval(a;b;g;n1 + 1))]} 
      (g = f1 ∈ (ℕn1 ⟶ 𝔹))
10. g : n1:ℕ
⟶ f1:{f:ℕn1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;f;n1)), snd(cantor-interval(a;b;f;n1))]} 
⟶ {g:ℕn1 + 1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;g;n1 + 1)), snd(cantor-interval(a;b;g;n1 + 1))]} 
11. ∀n1:ℕ. ∀f1:{f:ℕn1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;f;n1)), snd(cantor-interval(a;b;f;n1))]} .
      ((g n1 f1) = f1 ∈ (ℕn1 ⟶ 𝔹))
12. m : ℕ
⊢ λi,h. (g (n + i) h) ∈ ∀n@0:ℕ
                      ({f:ℕn + n@0 ⟶ 𝔹| 
                        x ∈ [fst(cantor-interval(a;b;f;n + n@0)), snd(cantor-interval(a;b;f;n + n@0))]} 
                      
⇒ {f:ℕn + n@0 + 1 ⟶ 𝔹| 
                          x ∈ [fst(cantor-interval(a;b;f;n + n@0 + 1)), snd(cantor-interval(a;b;f;n + n@0 + 1))]} )
3
1. a : ℝ
2. b : ℝ
3. [%] : a < b
4. x : ℝ
5. x ∈ [a, b]
6. n : ℕ
7. f : ℕn ⟶ 𝔹
8. x ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]
9. ∀n1:ℕ. ∀f1:{f:ℕn1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;f;n1)), snd(cantor-interval(a;b;f;n1))]} .
     ∃g:{g:ℕn1 + 1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;g;n1 + 1)), snd(cantor-interval(a;b;g;n1 + 1))]} 
      (g = f1 ∈ (ℕn1 ⟶ 𝔹))
10. g : n1:ℕ
⟶ f1:{f:ℕn1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;f;n1)), snd(cantor-interval(a;b;f;n1))]} 
⟶ {g:ℕn1 + 1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;g;n1 + 1)), snd(cantor-interval(a;b;g;n1 + 1))]} 
11. ∀n1:ℕ. ∀f1:{f:ℕn1 ⟶ 𝔹| x ∈ [fst(cantor-interval(a;b;f;n1)), snd(cantor-interval(a;b;f;n1))]} .
      ((g n1 f1) = f1 ∈ (ℕn1 ⟶ 𝔹))
12. ∀m:ℕ
      (primrec(m;f;λi,h. (g (n + i) h)) ∈ {f:ℕn + m ⟶ 𝔹| 
                                       x ∈ [fst(cantor-interval(a;b;f;n + m)), snd(cantor-interval(a;b;f;n + m))]} )
⊢ ∃g:ℕ ⟶ 𝔹. ((cantor-to-interval(a;b;g) = x) ∧ (g = f ∈ (ℕn ⟶ 𝔹)))
Latex:
Latex:
1.  a  :  \mBbbR{}
2.  b  :  \mBbbR{}
3.  [\%]  :  a  <  b
4.  x  :  \mBbbR{}
5.  x  \mmember{}  [a,  b]
6.  n  :  \mBbbN{}
7.  f  :  \mBbbN{}n  {}\mrightarrow{}  \mBbbB{}
8.  x  \mmember{}  [fst(cantor-interval(a;b;f;n)),  snd(cantor-interval(a;b;f;n))]
9.  \mforall{}n1:\mBbbN{}.  \mforall{}f1:\{f:\mBbbN{}n1  {}\mrightarrow{}  \mBbbB{}|  x  \mmember{}  [fst(cantor-interval(a;b;f;n1)),  snd(cantor-interval(a;b;f;n1))]\}  .
          \mexists{}g:\{g:\mBbbN{}n1  +  1  {}\mrightarrow{}  \mBbbB{}| 
                  x  \mmember{}  [fst(cantor-interval(a;b;g;n1  +  1)),  snd(cantor-interval(a;b;g;n1  +  1))]\} 
            (g  =  f1)
10.  g  :  n1:\mBbbN{}
{}\mrightarrow{}  f1:\{f:\mBbbN{}n1  {}\mrightarrow{}  \mBbbB{}|  x  \mmember{}  [fst(cantor-interval(a;b;f;n1)),  snd(cantor-interval(a;b;f;n1))]\} 
{}\mrightarrow{}  \{g:\mBbbN{}n1  +  1  {}\mrightarrow{}  \mBbbB{}|  x  \mmember{}  [fst(cantor-interval(a;b;g;n1  +  1)),  snd(cantor-interval(a;b;g;n1  +  1))]\} 
11.  \mforall{}n1:\mBbbN{}.  \mforall{}f1:\{f:\mBbbN{}n1  {}\mrightarrow{}  \mBbbB{}|  x  \mmember{}  [fst(cantor-interval(a;b;f;n1)),  snd(cantor-interval(a;b;f;n1))]\}  .
            ((g  n1  f1)  =  f1)
\mvdash{}  \mexists{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  ((cantor-to-interval(a;b;g)  =  x)  \mwedge{}  (g  =  f))
By
Latex:
(Assert  \mkleeneopen{}\mforall{}m:\mBbbN{}
                      (primrec(m;f;\mlambda{}i,h.  (g  (n  +  i)  h))  \mmember{}  \{f:\mBbbN{}n  +  m  {}\mrightarrow{}  \mBbbB{}| 
                                                                                        x  \mmember{}  [fst(cantor-interval(a;b;f;n
                                                                                                +  m)),  snd(cantor-interval(a;b;f;n  +  m))]\}  )\mkleeneclose{}\mcdot{}
  THENA  ((D  0  THENA  Auto)
                THEN  InstLemma  `primrec-wf`  [\mkleeneopen{}\mlambda{}\msubtwo{}m.\{f:\mBbbN{}n  +  m  {}\mrightarrow{}  \mBbbB{}| 
                                                                                      x  \mmember{}  [fst(cantor-interval(a;b;f;n
                                                                                              +  m)),  snd(cantor-interval(a;b;f;n  +  m))]\}  \mkleeneclose{}
                ;  \mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}\mlambda{}i,h.  (g  (n  +  i)  h)\mkleeneclose{};\mkleeneopen{}m\mkleeneclose{}]\mcdot{}
                THEN  Try  (QuickAuto))
  )
Home
Index