Step
*
1
1
of Lemma
case-real3-seq_wf
1. f : ℕ+ ⟶ 𝔹
2. b : ℝ
3. a : ℝ supposing ∃n:ℕ+. (↑(f n))
4. ∀n,m:ℕ+. ((↑(f n))
⇒ (¬↑(f m))
⇒ (|(a m) - b m| ≤ 4))
5. n : ℕ+
6. m : ℕ+
7. ¬↑(f m)
8. ↑(f n)
9. |(m * (b n)) - n * (b m)| ≤ (2 * (n + m))
10. |(m * (a n)) - n * (a m)| ≤ (2 * (n + m))
11. |(a m) - b m| ≤ 4
12. |n * ((a m) - b m)| ≤ (|n| * 4)
⊢ |(m * (a n)) - n * (b m)| ≤ (6 * (n + m))
BY
{ ((InstLemma `int-triangle-inequality` [⌜(m * (a n)) - n * (a m)⌝;⌜n * ((a m) - b m)⌝]⋅ THENA Auto)
THEN (Subst' ((m * (a n)) - n * (a m)) + (n * ((a m) - b m)) ~ (m * (a n)) - n * (b m) -1 THENA Auto)
THEN (RWW "-1 -2 -4 -5" 0 THENA Auto)) }
1
1. f : ℕ+ ⟶ 𝔹
2. b : ℝ
3. a : ℝ supposing ∃n:ℕ+. (↑(f n))
4. ∀n,m:ℕ+. ((↑(f n))
⇒ (¬↑(f m))
⇒ (|(a m) - b m| ≤ 4))
5. n : ℕ+
6. m : ℕ+
7. ¬↑(f m)
8. ↑(f n)
9. |(m * (b n)) - n * (b m)| ≤ (2 * (n + m))
10. |(m * (a n)) - n * (a m)| ≤ (2 * (n + m))
11. |(a m) - b m| ≤ 4
12. |n * ((a m) - b m)| ≤ (|n| * 4)
13. |(m * (a n)) - n * (b m)| ≤ (|(m * (a n)) - n * (a m)| + |n * ((a m) - b m)|)
⊢ ((2 * (n + m)) + (|n| * 4)) ≤ (6 * (n + m))
Latex:
Latex:
1. f : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbB{}
2. b : \mBbbR{}
3. a : \mBbbR{} supposing \mexists{}n:\mBbbN{}\msupplus{}. (\muparrow{}(f n))
4. \mforall{}n,m:\mBbbN{}\msupplus{}. ((\muparrow{}(f n)) {}\mRightarrow{} (\mneg{}\muparrow{}(f m)) {}\mRightarrow{} (|(a m) - b m| \mleq{} 4))
5. n : \mBbbN{}\msupplus{}
6. m : \mBbbN{}\msupplus{}
7. \mneg{}\muparrow{}(f m)
8. \muparrow{}(f n)
9. |(m * (b n)) - n * (b m)| \mleq{} (2 * (n + m))
10. |(m * (a n)) - n * (a m)| \mleq{} (2 * (n + m))
11. |(a m) - b m| \mleq{} 4
12. |n * ((a m) - b m)| \mleq{} (|n| * 4)
\mvdash{} |(m * (a n)) - n * (b m)| \mleq{} (6 * (n + m))
By
Latex:
((InstLemma `int-triangle-inequality` [\mkleeneopen{}(m * (a n)) - n * (a m)\mkleeneclose{};\mkleeneopen{}n * ((a m) - b m)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Subst' ((m * (a n)) - n * (a m)) + (n * ((a m) - b m)) \msim{} (m * (a n)) - n * (b m) -1
THENA Auto
)
THEN (RWW "-1 -2 -4 -5" 0 THENA Auto))
Home
Index