Nuprl Lemma : case-real3-seq_wf

[f:ℕ+ ⟶ 𝔹]. ∀[b:ℝ]. ∀[a:ℝ supposing ∃n:ℕ+(↑(f n))].
  case-real3-seq(a;b;f) ∈ {s:ℕ+ ⟶ ℤ3-regular-seq(s)}  supposing ∀n,m:ℕ+.  ((↑(f n))  (¬↑(f m))  (|(a m) m| ≤ \000C4))


Proof




Definitions occuring in Statement :  case-real3-seq: case-real3-seq(a;b;f) real: regular-int-seq: k-regular-seq(f) absval: |i| nat_plus: + assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] subtract: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a case-real3-seq: case-real3-seq(a;b;f) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  subtype_rel: A ⊆B prop: exists: x:A. B[x] sq_type: SQType(T) guard: {T} assert: b true: True real: bfalse: ff regular-int-seq: k-regular-seq(f) uiff: uiff(P;Q) and: P ∧ Q nat_plus: + nat: sq_stable: SqStable(P) squash: T or: P ∨ Q bnot: ¬bb false: False not: ¬A decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rev_uimplies: rev_uimplies(P;Q) ge: i ≥  iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  uimplies_subtype nat_plus_wf assert_wf subtype_base_sq bool_wf bool_subtype_base istype-assert eqtt_to_assert sq_stable__le absval_wf subtract_wf real_wf eqff_to_assert bool_cases_sqequal assert-bnot regular-int-seq_wf istype-void istype-le nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermMultiply_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_functionality le_weakening mul_preserves_le le_wf squash_wf true_wf absval_mul subtype_rel_self iff_weakening_equal int-triangle-inequality int_subtype_base decidable__equal_int decidable__lt istype-less_than intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma le_transitivity add_functionality_wrt_le nat_plus_subtype_nat add_functionality_wrt_eq absval_pos absval-diff-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt lambdaEquality_alt applyEquality hypothesisEquality hypothesis inhabitedIsType lambdaFormation_alt thin sqequalHypSubstitution unionElimination equalityElimination sqequalRule extract_by_obid isectElimination because_Cache functionEquality intEquality productEquality independent_isectElimination dependent_pairFormation_alt instantiate cumulativity dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination natural_numberEquality setElimination rename equalityIstype productElimination multiplyEquality addEquality imageMemberEquality baseClosed imageElimination applyLambdaEquality functionExtensionality promote_hyp voidElimination universeIsType axiomEquality functionIsType isect_memberEquality_alt isectIsTypeImplies isectIsType productIsType approximateComputation int_eqEquality independent_pairFormation universeEquality

Latex:
\mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[b:\mBbbR{}].  \mforall{}[a:\mBbbR{}  supposing  \mexists{}n:\mBbbN{}\msupplus{}.  (\muparrow{}(f  n))].
    case-real3-seq(a;b;f)  \mmember{}  \{s:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  3-regular-seq(s)\}    supposing  \mforall{}n,m:\mBbbN{}\msupplus{}.    ((\muparrow{}(f  n))  {}\mRightarrow{}  (\mneg{}\muparrow{}(f  m))  \000C{}\mRightarrow{}  (|(a  m)  -  b  m|  \mleq{}  4))



Date html generated: 2019_10_29-AM-09_37_25
Last ObjectModification: 2019_06_14-PM-03_10_11

Theory : reals


Home Index