Nuprl Lemma : case-real3-seq_wf
∀[f:ℕ+ ⟶ 𝔹]. ∀[b:ℝ]. ∀[a:ℝ supposing ∃n:ℕ+. (↑(f n))].
  case-real3-seq(a;b;f) ∈ {s:ℕ+ ⟶ ℤ| 3-regular-seq(s)}  supposing ∀n,m:ℕ+.  ((↑(f n)) 
⇒ (¬↑(f m)) 
⇒ (|(a m) - b m| ≤ \000C4))
Proof
Definitions occuring in Statement : 
case-real3-seq: case-real3-seq(a;b;f)
, 
real: ℝ
, 
regular-int-seq: k-regular-seq(f)
, 
absval: |i|
, 
nat_plus: ℕ+
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
case-real3-seq: case-real3-seq(a;b;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
assert: ↑b
, 
true: True
, 
real: ℝ
, 
bfalse: ff
, 
regular-int-seq: k-regular-seq(f)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
false: False
, 
not: ¬A
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
uimplies_subtype, 
nat_plus_wf, 
assert_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
istype-assert, 
eqtt_to_assert, 
sq_stable__le, 
absval_wf, 
subtract_wf, 
real_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
regular-int-seq_wf, 
istype-void, 
istype-le, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_functionality, 
le_weakening, 
mul_preserves_le, 
le_wf, 
squash_wf, 
true_wf, 
absval_mul, 
subtype_rel_self, 
iff_weakening_equal, 
int-triangle-inequality, 
int_subtype_base, 
decidable__equal_int, 
decidable__lt, 
istype-less_than, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
le_transitivity, 
add_functionality_wrt_le, 
nat_plus_subtype_nat, 
add_functionality_wrt_eq, 
absval_pos, 
absval-diff-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
thin, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
because_Cache, 
functionEquality, 
intEquality, 
productEquality, 
independent_isectElimination, 
dependent_pairFormation_alt, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
natural_numberEquality, 
setElimination, 
rename, 
equalityIstype, 
productElimination, 
multiplyEquality, 
addEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyLambdaEquality, 
functionExtensionality, 
promote_hyp, 
voidElimination, 
universeIsType, 
axiomEquality, 
functionIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
isectIsType, 
productIsType, 
approximateComputation, 
int_eqEquality, 
independent_pairFormation, 
universeEquality
Latex:
\mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[b:\mBbbR{}].  \mforall{}[a:\mBbbR{}  supposing  \mexists{}n:\mBbbN{}\msupplus{}.  (\muparrow{}(f  n))].
    case-real3-seq(a;b;f)  \mmember{}  \{s:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  3-regular-seq(s)\}    supposing  \mforall{}n,m:\mBbbN{}\msupplus{}.    ((\muparrow{}(f  n))  {}\mRightarrow{}  (\mneg{}\muparrow{}(f  m))  \000C{}\mRightarrow{}  (|(a  m)  -  b  m|  \mleq{}  4))
Date html generated:
2019_10_29-AM-09_37_25
Last ObjectModification:
2019_06_14-PM-03_10_11
Theory : reals
Home
Index