Step
*
1
1
2
1
of Lemma
closures-meet-sq
1. P : ℝ ⟶ ℙ
2. Q : ℝ ⟶ ℙ
3. a0 : {a:ℝ| P a}
4. b0 : ℝ
5. (Q b0) ∧ (a0 ≤ b0)
6. c : ℝ
7. (r0 ≤ c) ∧ (c < r1)
8. ∀a:{a:ℝ| P a} . ∀b:{b:ℝ| (Q b) ∧ (a ≤ b)} .
∃a':{a':ℝ| P a'} . (∃b':{b':ℝ| (Q b') ∧ (a' ≤ b')} [((a ≤ a') ∧ (b' ≤ b) ∧ ((b' - a') ≤ ((b - a) * c)))])
9. <a0, b0> ∈ a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)}
10. ∀ab:a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)}
∃ab':a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)}
(((fst(ab)) ≤ (fst(ab'))) ∧ ((snd(ab')) ≤ (snd(ab))) ∧ (((snd(ab')) - fst(ab')) ≤ (((snd(ab)) - fst(ab)) * c)))
11. s : ab:(a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)} ) ⟶ (a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)} )
12. ∀ab:a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)}
(((fst(ab)) ≤ (fst((s ab))))
∧ ((snd((s ab))) ≤ (snd(ab)))
∧ (((snd((s ab))) - fst((s ab))) ≤ (((snd(ab)) - fst(ab)) * c)))
13. n : ℕ
⊢ ((fst(primrec(n;<a0, b0>;λi,r. (s r)))) ≤ (fst(primrec(n + 1;<a0, b0>;λi,r. (s r)))))
∧ ((snd(primrec(n + 1;<a0, b0>;λi,r. (s r)))) ≤ (snd(primrec(n;<a0, b0>;λi,r. (s r)))))
∧ (((snd(primrec(n + 1;<a0, b0>;λi,r. (s r)))) - fst(primrec(n + 1;<a0, b0>;λi,r. (s r)))) ≤ (((snd(primrec(n;<a0, b0>;λ\000Ci,r. (s r))))
- fst(primrec(n;<a0, b0>;λi,r. (s r))))
* c))
BY
{ (Subst' primrec(n + 1;<a0, b0>;λi,r. (s r)) ~ s primrec(n;<a0, b0>;λi,r. (s r)) 0
THENM (InstHyp [⌜primrec(n;<a0, b0>;λi,r. (s r))⌝] 12⋅ THEN Auto)
) }
1
.....equality.....
1. P : ℝ ⟶ ℙ
2. Q : ℝ ⟶ ℙ
3. a0 : {a:ℝ| P a}
4. b0 : ℝ
5. (Q b0) ∧ (a0 ≤ b0)
6. c : ℝ
7. (r0 ≤ c) ∧ (c < r1)
8. ∀a:{a:ℝ| P a} . ∀b:{b:ℝ| (Q b) ∧ (a ≤ b)} .
∃a':{a':ℝ| P a'} . (∃b':{b':ℝ| (Q b') ∧ (a' ≤ b')} [((a ≤ a') ∧ (b' ≤ b) ∧ ((b' - a') ≤ ((b - a) * c)))])
9. <a0, b0> ∈ a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)}
10. ∀ab:a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)}
∃ab':a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)}
(((fst(ab)) ≤ (fst(ab'))) ∧ ((snd(ab')) ≤ (snd(ab))) ∧ (((snd(ab')) - fst(ab')) ≤ (((snd(ab)) - fst(ab)) * c)))
11. s : ab:(a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)} ) ⟶ (a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)} )
12. ∀ab:a:{a:ℝ| P a} × {b:ℝ| (Q b) ∧ (a ≤ b)}
(((fst(ab)) ≤ (fst((s ab))))
∧ ((snd((s ab))) ≤ (snd(ab)))
∧ (((snd((s ab))) - fst((s ab))) ≤ (((snd(ab)) - fst(ab)) * c)))
13. n : ℕ
⊢ primrec(n + 1;<a0, b0>;λi,r. (s r)) ~ s primrec(n;<a0, b0>;λi,r. (s r))
Latex:
Latex:
1. P : \mBbbR{} {}\mrightarrow{} \mBbbP{}
2. Q : \mBbbR{} {}\mrightarrow{} \mBbbP{}
3. a0 : \{a:\mBbbR{}| P a\}
4. b0 : \mBbbR{}
5. (Q b0) \mwedge{} (a0 \mleq{} b0)
6. c : \mBbbR{}
7. (r0 \mleq{} c) \mwedge{} (c < r1)
8. \mforall{}a:\{a:\mBbbR{}| P a\} . \mforall{}b:\{b:\mBbbR{}| (Q b) \mwedge{} (a \mleq{} b)\} .
\mexists{}a':\{a':\mBbbR{}| P a'\} . (\mexists{}b':\{b':\mBbbR{}| (Q b') \mwedge{} (a' \mleq{} b')\} [((a \mleq{} a') \mwedge{} (b' \mleq{} b) \mwedge{} ((b' - a') \mleq{} ((b - \000Ca) * c)))])
9. <a0, b0> \mmember{} a:\{a:\mBbbR{}| P a\} \mtimes{} \{b:\mBbbR{}| (Q b) \mwedge{} (a \mleq{} b)\}
10. \mforall{}ab:a:\{a:\mBbbR{}| P a\} \mtimes{} \{b:\mBbbR{}| (Q b) \mwedge{} (a \mleq{} b)\}
\mexists{}ab':a:\{a:\mBbbR{}| P a\} \mtimes{} \{b:\mBbbR{}| (Q b) \mwedge{} (a \mleq{} b)\}
(((fst(ab)) \mleq{} (fst(ab')))
\mwedge{} ((snd(ab')) \mleq{} (snd(ab)))
\mwedge{} (((snd(ab')) - fst(ab')) \mleq{} (((snd(ab)) - fst(ab)) * c)))
11. s : ab:(a:\{a:\mBbbR{}| P a\} \mtimes{} \{b:\mBbbR{}| (Q b) \mwedge{} (a \mleq{} b)\} ) {}\mrightarrow{} (a:\{a:\mBbbR{}| P a\} \mtimes{} \{b:\mBbbR{}| (Q b) \mwedge{} (a \mleq{} b)\} )
12. \mforall{}ab:a:\{a:\mBbbR{}| P a\} \mtimes{} \{b:\mBbbR{}| (Q b) \mwedge{} (a \mleq{} b)\}
(((fst(ab)) \mleq{} (fst((s ab))))
\mwedge{} ((snd((s ab))) \mleq{} (snd(ab)))
\mwedge{} (((snd((s ab))) - fst((s ab))) \mleq{} (((snd(ab)) - fst(ab)) * c)))
13. n : \mBbbN{}
\mvdash{} ((fst(primrec(n;<a0, b0>\mlambda{}i,r. (s r)))) \mleq{} (fst(primrec(n + 1;<a0, b0>\mlambda{}i,r. (s r)))))
\mwedge{} ((snd(primrec(n + 1;<a0, b0>\mlambda{}i,r. (s r)))) \mleq{} (snd(primrec(n;<a0, b0>\mlambda{}i,r. (s r)))))
\mwedge{} (((snd(primrec(n + 1;<a0, b0>\mlambda{}i,r. (s r))))
- fst(primrec(n + 1;<a0, b0>\mlambda{}i,r. (s r)))) \mleq{} (((snd(primrec(n;<a0, b0>\mlambda{}i,r. (s r))))
- fst(primrec(n;<a0, b0>\mlambda{}i,r. (s r))))
* c))
By
Latex:
(Subst' primrec(n + 1;<a0, b0>\mlambda{}i,r. (s r)) \msim{} s primrec(n;<a0, b0>\mlambda{}i,r. (s r)) 0
THENM (InstHyp [\mkleeneopen{}primrec(n;<a0, b0>\mlambda{}i,r. (s r))\mkleeneclose{}] 12\mcdot{} THEN Auto)
)
Home
Index