Nuprl Lemma : closures-meet-sq

[P,Q:ℝ ⟶ ℙ].
  ((∃a:{a:ℝa} (∃b:ℝ [((Q b) ∧ (a ≤ b))]))
   (∃c:{c:ℝ(r0 ≤ c) ∧ (c < r1)} 
       ∀a:{a:ℝa} . ∀b:{b:ℝ(Q b) ∧ (a ≤ b)} .
         ∃a':{a':ℝa'} (∃b':{b':ℝ(Q b') ∧ (a' ≤ b')}  [((a ≤ a') ∧ (b' ≤ b) ∧ ((b' a') ≤ ((b a) c)))]))
   (∃y:ℝ(y ∈ closure(λz.(↓z)) ∧ y ∈ closure(λz.(↓z)))))


Proof




Definitions occuring in Statement :  member-closure: y ∈ closure(A) rleq: x ≤ y rless: x < y rsub: y rmul: b int-to-real: r(n) real: uall: [x:A]. B[x] prop: all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] squash: T implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] sq_exists: x:A [B[x]] member: t ∈ T and: P ∧ Q prop: all: x:A. B[x] subtype_rel: A ⊆B pi1: fst(t) pi2: snd(t) cand: c∧ B sq_stable: SqStable(P) squash: T top: Top so_lambda: λ2x.t[x] so_apply: x[s] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B rbetween: x≤y≤z rless: x < y nat_plus: + rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 rge: x ≥ y real: nequal: a ≠ b ∈  rmul: b member-closure: y ∈ closure(A)
Lemmas referenced :  real_wf rleq_wf int-to-real_wf rless_wf subtype_rel_self rsub_wf rmul_wf sq_stable__rleq pi1_wf_top istype-void pi2_wf primrec_wf int_seg_wf istype-nat nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int intformless_wf int_formula_prop_less_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than add-subtract-cancel sq_stable__all nat_wf sq_stable__and le_witness_for_triv ge_wf rnexp_zero_lemma subtract-1-ge-0 radd_wf rminus_wf itermSubtract_wf itermMinus_wf nat_plus_properties itermMultiply_wf rleq_weakening_equal rleq_functionality req_weakening req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_const_lemma real_term_value_mul_lemma radd-preserves-rleq subtract_wf int_term_value_subtract_lemma subtract-add-cancel rleq-implies-rleq rnexp_wf rleq_functionality_wrt_implies rmul_preserves_rleq2 ifthenelse_wf eq_int_wf sq_stable__less_than assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma neg_assert_of_eq_int rmul_functionality rnexp-req rbetween_wf rmul-limit constant-limit rpowers-converge-ext rabs_wf sq_stable__rless rless_functionality rabs-of-nonneg converges-to_functionality common-limit-squeeze-ext member-closure_wf squash_wf converges-to_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution productElimination thin setElimination rename cut sqequalRule productIsType setIsType universeIsType introduction extract_by_obid hypothesis isectElimination natural_numberEquality hypothesisEquality functionIsType because_Cache applyEquality instantiate universeEquality inhabitedIsType dependent_pairEquality_alt dependent_set_memberEquality_alt dependent_functionElimination dependent_pairFormation_alt independent_functionElimination imageMemberEquality baseClosed imageElimination independent_pairFormation independent_pairEquality isect_memberEquality_alt voidElimination setEquality lambdaEquality_alt productEquality equalityTransitivity equalitySymmetry promote_hyp dependent_set_memberFormation_alt equalityIstype addEquality unionElimination independent_isectElimination approximateComputation int_eqEquality functionExtensionality equalityElimination cumulativity functionIsTypeImplies intWeakElimination

Latex:
\mforall{}[P,Q:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].
    ((\mexists{}a:\{a:\mBbbR{}|  P  a\}  .  (\mexists{}b:\mBbbR{}  [((Q  b)  \mwedge{}  (a  \mleq{}  b))]))
    {}\mRightarrow{}  (\mexists{}c:\{c:\mBbbR{}|  (r0  \mleq{}  c)  \mwedge{}  (c  <  r1)\} 
              \mforall{}a:\{a:\mBbbR{}|  P  a\}  .  \mforall{}b:\{b:\mBbbR{}|  (Q  b)  \mwedge{}  (a  \mleq{}  b)\}  .
                  \mexists{}a':\{a':\mBbbR{}|  P  a'\}  .  (\mexists{}b':\{b':\mBbbR{}|  (Q  b')  \mwedge{}  (a'  \mleq{}  b')\}    [((a  \mleq{}  a')  \mwedge{}  (b'  \mleq{}  b)  \mwedge{}  ((b'  -  a')  \mleq{}  ((\000Cb  -  a)  *  c)))]))
    {}\mRightarrow{}  (\mexists{}y:\mBbbR{}.  (y  \mmember{}  closure(\mlambda{}z.(\mdownarrow{}P  z))  \mwedge{}  y  \mmember{}  closure(\mlambda{}z.(\mdownarrow{}Q  z)))))



Date html generated: 2019_10_29-AM-10_41_53
Last ObjectModification: 2019_01_08-PM-00_27_56

Theory : reals


Home Index