Nuprl Lemma : rpowers-converge-ext

x:ℝ(((|x| < r1)  lim n→∞.x^n r0) ∧ ((r1 < x)  lim n →∞.x^n = ∞))


Proof




Definitions occuring in Statement :  converges-to-infinity: lim n →∞.x[n] = ∞ converges-to: lim n→∞.x[n] y rless: x < y rabs: |x| rnexp: x^k1 int-to-real: r(n) real: all: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  member: t ∈ T rabs: |x| int-to-real: r(n) rsub: y rminus: -(x) canonical-bound: canonical-bound(r) rpowers-converge rnexp-converges integer-bound rless_transitivity2 rless-int rleq_weakening_rless rationals-dense-ext uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  rpowers-converge lifting-strict-callbyvalue istype-void strict4-spread rnexp-converges integer-bound rless_transitivity2 rless-int rleq_weakening_rless rationals-dense-ext
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination

Latex:
\mforall{}x:\mBbbR{}.  (((|x|  <  r1)  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x\^{}n  =  r0)  \mwedge{}  ((r1  <  x)  {}\mRightarrow{}  lim  n  \mrightarrow{}\minfty{}.x\^{}n  =  \minfty{}))



Date html generated: 2019_10_29-AM-10_10_35
Last ObjectModification: 2019_04_01-PM-10_59_29

Theory : reals


Home Index