Nuprl Lemma : rpowers-converge

x:ℝ(((|x| < r1)  lim n→∞.x^n r0) ∧ ((r1 < x)  lim n →∞.x^n = ∞))


Proof




Definitions occuring in Statement :  converges-to-infinity: lim n →∞.x[n] = ∞ converges-to: lim n→∞.x[n] y rless: x < y rabs: |x| rnexp: x^k1 int-to-real: r(n) real: all: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q cand: c∧ B implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] exists: x:A. B[x] uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) rdiv: (x/y) all-large: large(n).P[n] converges-to-infinity: lim n →∞.x[n] = ∞ nat_plus: + satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) sq_stable: SqStable(P) real: subtype_rel: A ⊆B sq_exists: x:{A| B[x]} rless: x < y nat: so_apply: x[s] so_lambda: λ2x.t[x] ge: i ≥  subtract: m le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y
Lemmas referenced :  rnexp-converges rless_wf rabs_wf int-to-real_wf real_wf rdiv_wf rsub_wf rless-int rmul_preserves_rless radd_wf rmul_wf rminus_wf rinv_wf2 rless-implies-rless real_term_polynomial itermSubtract_wf itermVar_wf itermConstant_wf itermAdd_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_add_lemma req-iff-rsub-is-0 itermMultiply_wf real_term_value_mul_lemma rless_functionality req_transitivity itermMinus_wf real_term_value_minus_lemma radd_functionality rmul_functionality rmul-rinv req_weakening rmul-identity1 rminus_functionality squash_wf true_wf rminus-int rleq-int rmul_preserves_rleq2 rleq_weakening_rless less_than'_wf radd-preserves-rleq subtract_wf radd-preserves-rless rless_transitivity1 rdiv_functionality rsub-int rmul-rdiv-cancel2 radd-int add-commutes add-swap add-associates zero-add nat_properties nat_wf all_wf rleq_wf rnexp_wf rabs-bounds rleq_transitivity rless_transitivity2 nat_plus_properties sq_stable__less_than decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf decidable__lt less_than_wf integer-bound nat_plus_wf rpower-greater-one
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis isectElimination natural_numberEquality independent_pairFormation dependent_pairFormation independent_isectElimination sqequalRule inrFormation because_Cache productElimination imageMemberEquality baseClosed productEquality minusEquality computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality applyEquality imageElimination equalityTransitivity equalitySymmetry lemma_by_obid rename setElimination unionElimination addEquality dependent_set_memberEquality functionEquality promote_hyp axiomEquality independent_pairEquality isect_memberFormation

Latex:
\mforall{}x:\mBbbR{}.  (((|x|  <  r1)  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x\^{}n  =  r0)  \mwedge{}  ((r1  <  x)  {}\mRightarrow{}  lim  n  \mrightarrow{}\minfty{}.x\^{}n  =  \minfty{}))



Date html generated: 2017_10_03-AM-08_54_50
Last ObjectModification: 2017_07_28-AM-07_36_45

Theory : reals


Home Index