Nuprl Lemma : rpower-greater-one

x,q:ℝ.  ((r0 < x)  ((r1 x) < q)  (∀n:ℕ(r1 (r(n) x)) < q^n supposing 1 < n))


Proof




Definitions occuring in Statement :  rless: x < y rnexp: x^k1 rmul: b radd: b int-to-real: r(n) real: nat: less_than: a < b uimplies: supposing a all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] less_than: a < b squash: T less_than': less_than'(a;b) false: False and: P ∧ Q prop: iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B not: ¬A uiff: uiff(P;Q) itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top guard: {T} decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) so_lambda: λ2x.t[x] nat: rless: x < y sq_exists: x:{A| B[x]} subtype_rel: A ⊆B real: sq_stable: SqStable(P) nat_plus: + satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] so_apply: x[s] cand: c∧ B rge: x ≥ y true: True bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  member-less_than less_than_wf rleq-int false_wf radd-preserves-rleq int-to-real_wf rleq_functionality radd_wf real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma req-iff-rsub-is-0 rless_transitivity1 rleq_weakening_rless decidable__equal_int subtype_base_sq int_subtype_base isect_wf subtract_wf rless_wf rmul_wf rnexp_wf sq_stable__less_than nat_plus_properties real_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf set_wf primrec-wf2 nat_wf rmul_functionality_wrt_rleq2 rleq_wf rleq_transitivity rleq_weakening_equal rless_functionality_wrt_implies rpower-two req_weakening rless_functionality rmul-one-both radd-preserves-rless rminus-as-rmul rmul-distrib rminus-radd rminus_wf rmul-int rmul-distrib2 rmul-identity1 req_inversion radd-assoc radd-int rmul_functionality rmul-zero-both radd-ac req_transitivity radd-zero-both radd_functionality radd_assoc rmul_preserves_rless decidable__lt intformeq_wf int_formula_prop_eq_lemma rmul_functionality_wrt_rless2 rnexp-nonneg radd_comm rless_transitivity2 rless-int eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int rnexp-req rless-implies-rless itermMultiply_wf real_term_value_mul_lemma rsub_wf req_functionality rsub-int itermMinus_wf real_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin isect_memberFormation introduction extract_by_obid sqequalHypSubstitution isectElimination sqequalRule imageElimination productElimination hypothesis voidElimination independent_isectElimination rename natural_numberEquality setElimination hypothesisEquality dependent_functionElimination because_Cache independent_functionElimination independent_pairFormation computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality unionElimination instantiate cumulativity dependent_set_memberEquality addEquality applyEquality imageMemberEquality baseClosed dependent_pairFormation productEquality inlFormation equalitySymmetry equalityTransitivity multiplyEquality levelHypothesis minusEquality addLevel promote_hyp equalityElimination

Latex:
\mforall{}x,q:\mBbbR{}.    ((r0  <  x)  {}\mRightarrow{}  ((r1  +  x)  <  q)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  (r1  +  (r(n)  *  x))  <  q\^{}n  supposing  1  <  n))



Date html generated: 2017_10_03-AM-08_34_00
Last ObjectModification: 2017_07_28-AM-07_28_33

Theory : reals


Home Index