Nuprl Lemma : rpower-two

[x:ℝ]. (x^2 (x x))


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y rmul: b real: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop:
Lemmas referenced :  rnexp2 req_witness rnexp_wf false_wf le_wf rmul_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation independent_functionElimination

Latex:
\mforall{}[x:\mBbbR{}].  (x\^{}2  =  (x  *  x))



Date html generated: 2016_05_18-AM-07_20_16
Last ObjectModification: 2015_12_28-AM-00_47_25

Theory : reals


Home Index