Nuprl Lemma : rmul_functionality_wrt_rless2

x,y,z,w:ℝ.  ((r0 < w)  (x < z)  (x w) < (z y) supposing w ≤ supposing r0 ≤ z)


Proof




Definitions occuring in Statement :  rleq: x ≤ y rless: x < y rmul: b int-to-real: r(n) real: uimplies: supposing a all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q not: ¬A false: False uall: [x:A]. B[x] subtype_rel: A ⊆B real: prop: itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top uiff: uiff(P;Q) guard: {T}
Lemmas referenced :  less_than'_wf rsub_wf int-to-real_wf real_wf nat_plus_wf rmul_functionality_wrt_rless rmul_functionality_wrt_rleq rleq_wf rless_wf rless-implies-rless rmul_wf real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rleq-implies-rleq rless_transitivity1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality voidElimination extract_by_obid isectElimination applyEquality natural_numberEquality hypothesis setElimination rename minusEquality axiomEquality equalityTransitivity equalitySymmetry independent_functionElimination because_Cache independent_isectElimination computeAll int_eqEquality intEquality isect_memberEquality voidEquality

Latex:
\mforall{}x,y,z,w:\mBbbR{}.    ((r0  <  w)  {}\mRightarrow{}  (x  <  z)  {}\mRightarrow{}  (x  *  w)  <  (z  *  y)  supposing  w  \mleq{}  y  supposing  r0  \mleq{}  z)



Date html generated: 2017_10_03-AM-08_26_44
Last ObjectModification: 2017_07_28-AM-07_24_32

Theory : reals


Home Index