Nuprl Lemma : common-limit-squeeze-ext

a,b,c:ℕ ⟶ ℝ.
  ((∀n:ℕ((a[n] ≤ a[n 1]) ∧ (a[n 1] ≤ b[n 1]) ∧ (b[n 1] ≤ b[n])))
   lim n→∞.c[n] r0
   (∀n:ℕr0≤b[n] a[n]≤c[n])
   (∃y:ℝ(lim n→∞.a[n] y ∧ lim n→∞.b[n] y)))


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rbetween: x≤y≤z rleq: x ≤ y rsub: y int-to-real: r(n) real: nat: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  member: t ∈ T so_apply: x[s] so_lambda: λ2x.t[x] accelerate: accelerate(k;f) imax: imax(a;b) ifthenelse: if then else fi  le_int: i ≤j bnot: ¬bb lt_int: i <j btrue: tt it: bfalse: ff common-limit-squeeze converges-iff-cauchy sq-all-large-and uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a
Lemmas referenced :  common-limit-squeeze lifting-strict-decide istype-void strict4-decide lifting-strict-less converges-iff-cauchy sq-all-large-and
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination

Latex:
\mforall{}a,b,c:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}n:\mBbbN{}.  ((a[n]  \mleq{}  a[n  +  1])  \mwedge{}  (a[n  +  1]  \mleq{}  b[n  +  1])  \mwedge{}  (b[n  +  1]  \mleq{}  b[n])))
    {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.c[n]  =  r0
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  r0\mleq{}b[n]  -  a[n]\mleq{}c[n])
    {}\mRightarrow{}  (\mexists{}y:\mBbbR{}.  (lim  n\mrightarrow{}\minfty{}.a[n]  =  y  \mwedge{}  lim  n\mrightarrow{}\minfty{}.b[n]  =  y)))



Date html generated: 2019_10_29-AM-10_11_05
Last ObjectModification: 2019_04_01-PM-10_59_20

Theory : reals


Home Index