Nuprl Lemma : common-limit-midpoints

a,b:ℕ ⟶ ℝ.
  ((∀n:ℕ
      (((a[n 1] a[n]) ∧ (b[n 1] (a[n] b[n]/r(2)))) ∨ ((a[n 1] (a[n] b[n]/r(2))) ∧ (b[n 1] b[n]))))
   (∃y:ℝ(lim n→∞.a[n] y ∧ lim n→∞.b[n] y)))


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rdiv: (x/y) req: y radd: b int-to-real: r(n) real: nat: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T nat: false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B decidable: Dec(P) or: P ∨ Q squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) less_than': less_than'(a;b) less_than: a < b so_apply: x[s] rneq: x ≠ y rless: x < y sq_exists: x:A [B[x]] nat_plus: + rev_uimplies: rev_uimplies(P;Q) int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T) req_int_terms: t1 ≡ t2 rdiv: (x/y) rge: x ≥ y cand: c∧ B absval: |i| so_lambda: λ2x.t[x] real: int_upper: {i...} converges: x[n]↓ as n→∞ cauchy: cauchy(n.x[n]) top: Top converges-to: lim n→∞.x[n] y sq-all-large: large(n).{P[n]}

Latex:
\mforall{}a,b:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}n:\mBbbN{}
            (((a[n  +  1]  =  a[n])  \mwedge{}  (b[n  +  1]  =  (a[n]  +  b[n]/r(2))))
            \mvee{}  ((a[n  +  1]  =  (a[n]  +  b[n]/r(2)))  \mwedge{}  (b[n  +  1]  =  b[n]))))
    {}\mRightarrow{}  (\mexists{}y:\mBbbR{}.  (lim  n\mrightarrow{}\minfty{}.a[n]  =  y  \mwedge{}  lim  n\mrightarrow{}\minfty{}.b[n]  =  y)))



Date html generated: 2020_05_20-AM-11_10_09
Last ObjectModification: 2019_12_14-AM-11_19_06

Theory : reals


Home Index