Step
*
of Lemma
compact-dist-zero
∀[X:Type]
∀d:metric(X). ∀A:Type.
∀c:mcompact(A;d). ∀x:X. (dist(x;A) = r0
⇐⇒ ∀n:ℕ+. ∃a:A. (mdist(d;x;a) < (r1/r(n)))) supposing A ⊆r X
BY
{ ((UnivCD THENA Auto)
THEN (Assert dist-fun(d;x) ∈ FUN(A ⟶ ℝ) BY
(DoSubsume THEN Auto))
THEN (InstLemma `compact-inf-property` [⌜A⌝;⌜d⌝;⌜c⌝;⌜dist-fun(d;x)⌝]⋅ THENA Auto)
THEN (Subst' compact-inf{i:l}(d;c;dist-fun(d;x)) ~ dist(x;A) -1 THENA (RepUR ``compact-dist`` 0 THEN Auto))
THEN D -1
THEN (RepeatFor 2 (D 0) THENA ((RepeatFor 2 (D 0) THEN Try ((Assert a ∈ X BY Auto)) THEN Auto) ORELSE Auto))) }
1
1. [X] : Type
2. d : metric(X)
3. A : Type
4. A ⊆r X
5. c : mcompact(A;d)
6. x : X
7. dist-fun(d;x) ∈ FUN(A ⟶ ℝ)
8. ∀x@0:A. (dist(x;A) ≤ (dist-fun(d;x) x@0))
9. ∀e:ℝ. ((r0 < e)
⇒ (∃x@0:A. ((dist-fun(d;x) x@0) < (dist(x;A) + e))))
10. dist(x;A) = r0
⊢ ∀n:ℕ+. ∃a:A. (mdist(d;x;a) < (r1/r(n)))
2
1. [X] : Type
2. d : metric(X)
3. A : Type
4. A ⊆r X
5. c : mcompact(A;d)
6. x : X
7. dist-fun(d;x) ∈ FUN(A ⟶ ℝ)
8. ∀x@0:A. (dist(x;A) ≤ (dist-fun(d;x) x@0))
9. ∀e:ℝ. ((r0 < e)
⇒ (∃x@0:A. ((dist-fun(d;x) x@0) < (dist(x;A) + e))))
10. ∀n:ℕ+. ∃a:A. (mdist(d;x;a) < (r1/r(n)))
⊢ dist(x;A) = r0
Latex:
Latex:
\mforall{}[X:Type]
\mforall{}d:metric(X). \mforall{}A:Type.
\mforall{}c:mcompact(A;d). \mforall{}x:X. (dist(x;A) = r0 \mLeftarrow{}{}\mRightarrow{} \mforall{}n:\mBbbN{}\msupplus{}. \mexists{}a:A. (mdist(d;x;a) < (r1/r(n))))
supposing A \msubseteq{}r X
By
Latex:
((UnivCD THENA Auto)
THEN (Assert dist-fun(d;x) \mmember{} FUN(A {}\mrightarrow{} \mBbbR{}) BY
(DoSubsume THEN Auto))
THEN (InstLemma `compact-inf-property` [\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}dist-fun(d;x)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Subst' compact-inf\{i:l\}(d;c;dist-fun(d;x)) \msim{} dist(x;A) -1
THENA (RepUR ``compact-dist`` 0 THEN Auto)
)
THEN D -1
THEN (RepeatFor 2 (D 0)
THENA ((RepeatFor 2 (D 0) THEN Try ((Assert a \mmember{} X BY Auto)) THEN Auto) ORELSE Auto)
))
Home
Index