Nuprl Lemma : compact-dist-zero

[X:Type]
  ∀d:metric(X). ∀A:Type.
    ∀c:mcompact(A;d). ∀x:X.  (dist(x;A) r0 ⇐⇒ ∀n:ℕ+. ∃a:A. (mdist(d;x;a) < (r1/r(n)))) supposing A ⊆X


Proof




Definitions occuring in Statement :  compact-dist: dist(x;A) mcompact: mcompact(X;d) mdist: mdist(d;x;y) metric: metric(X) rdiv: (x/y) rless: x < y req: y int-to-real: r(n) nat_plus: + uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q natural_number: $n universe: Type
Definitions unfolded in proof :  sq_exists: x:A [B[x]] rless: x < y req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) dist-fun: dist-fun(d;x) so_apply: x[s] so_lambda: λ2x.t[x] mfun: FUN(X ⟶ Y) top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) or: P ∨ Q guard: {T} rneq: x ≠ y nat_plus: + exists: x:A. B[x] istype: istype(T) rev_implies:  Q prop: implies:  Q iff: ⇐⇒ Q and: P ∧ Q compact-dist: dist(x;A) subtype_rel: A ⊆B member: t ∈ T uimplies: supposing a all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  rless_irreflexivity rleq_weakening_rless rless_transitivity2 rless_transitivity1 small-reciprocal-real rleq_antisymmetry compact-dist-nonneg not-rless real_term_value_var_lemma real_term_value_const_lemma real_term_value_add_lemma real_term_value_sub_lemma real_polynomial_null req-iff-rsub-is-0 radd_functionality req_weakening rless_functionality int_term_value_mul_lemma itermMultiply_wf rless-int-fractions2 itermAdd_wf itermSubtract_wf radd_wf subtype_rel_dep_function is-mfun_wf subtype_rel_set istype-universe metric_wf subtype_rel_wf mcompact_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_plus_properties rless-int rdiv_wf mdist_wf rless_wf nat_plus_wf int-to-real_wf compact-dist_wf req_wf metric-on-subtype compact-inf-property rmetric_wf real_wf mfun-subtype2 dist-fun_wf
Rules used in proof :  dependent_set_memberEquality_alt multiplyEquality functionEquality universeEquality instantiate inhabitedIsType voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation unionElimination independent_functionElimination inrFormation_alt because_Cache setElimination closedConclusion productIsType lambdaEquality_alt functionIsType natural_numberEquality universeIsType independent_pairFormation productElimination equalitySymmetry equalityTransitivity dependent_functionElimination independent_isectElimination applyEquality hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid rename thin hypothesis axiomEquality sqequalRule introduction cut lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}A:Type.
        \mforall{}c:mcompact(A;d).  \mforall{}x:X.    (dist(x;A)  =  r0  \mLeftarrow{}{}\mRightarrow{}  \mforall{}n:\mBbbN{}\msupplus{}.  \mexists{}a:A.  (mdist(d;x;a)  <  (r1/r(n)))) 
        supposing  A  \msubseteq{}r  X



Date html generated: 2019_10_30-AM-07_13_25
Last ObjectModification: 2019_10_25-PM-05_46_39

Theory : reals


Home Index